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1 Interpolation Function and Gauss-Legendre Quadrature
1.1 Introduction
In the finite element method, it is necessary to express the physical quantities of any point in the element with nodal
physical quantities using interpolation function [N ]. For exmple, in the thermal conductivity analysis, a temperature at
any point T can be expressed as follow.

T = N1(a, b) · ϕi + N2(a, b) · ϕ j + N3(a, b) · ϕk + N4(a, b) · ϕl

where, ϕi , ϕ j , ϕk , ϕl mean the temperature at node i, j, k, l for each. If vectoe expression is applied,

T =
[
N1 N2 N3 N4

]
{ϕ} = [N ]{ϕ}

where, {ϕ} means nodal temperature vector. In this section, it is considered to use the Gauss-Legendre quadrature for
4 nodes element and to express the physical quantities using the normalized parameter coordinate (a, b) with range of
[－ 1, 1].

1.2 Interpolation function and its derivative
In actural calculation, since a mathematical expression and derivative of interpolation function are required, they will be
derived. After this, the interpolation function N(a, b) is used, where (a, b) is normalized parameter coordinate with range
of a = [－ 1, 1] and b = [－ 1, 1]. <p/>

1.2.1 Mathematical expression of interpolation function
For a 4 nodes element, following interpolation function can be applied.

N1 =
1
4
(1 − a)(1 − b) N2 =

1
4
(1 + a)(1 − b)

N3 =
1
4
(1 + a)(1 + b) N4 =

1
4
(1 − a)(1 + b)

1.2.2 Derivative of interpolation function
The partial derivatives of N about a and b can be obtained s follows.

∂N1

∂a
= −

1
4
(1 − b)

∂N2

∂a
= +

1
4
(1 − b)

∂N3

∂a
= +

1
4
(1 + b)

∂N4

∂a
= −

1
4
(1 + b)

∂N1

∂b
= −

1
4
(1 − a)

∂N2

∂b
= −

1
4
(1 + a)

∂N3

∂b
= +

1
4
(1 + a)

∂N4

∂b
= +

1
4
(1 − a)

Next, above equations can be expressed using Jacobi matrix [J] as follows.
∂Ni

∂a
∂Ni

∂b

 = [J]


∂Ni

∂x
∂Ni

∂y



∂Ni

∂x
∂Ni

∂y

 = [J]−1


∂Ni

∂a
∂Ni

∂b


[J] =


∂x

∂a

∂y

∂a
∂x

∂b

∂y

∂b

 =


4∑
i=1

(
∂Ni

∂a
xi

) 4∑
i=1

(
∂Ni

∂a
yi

)
4∑
i=1

(
∂Ni

∂b
xi

) 4∑
i=1

(
∂Ni

∂b
yi

)

=

[
J11 J12
J21 J22

]

[J]−1 =
1

det(J)

[
J22 −J12
−J21 J11

]
det(J) = J11 · J22 − J12 · J21

From above,

∂Ni

∂x
=

1
det(J)

{
J22
∂Ni

∂a
− J12

∂Ni

∂b

}
∂Ni

∂y
=

1
det(J)

{
−J21

∂Ni

∂a
+ J11

∂Ni

∂b

}
1



the each element of [J] can be shown as follows, where xi, j,k,l and yi, j,k,l means nodal coordinates which form a finite
element.

J11 =
∂N1

∂a
xi +
∂N2

∂a
xj +

∂N3

∂a
xk +

∂N4

∂a
xl

J12 =
∂N1

∂a
yi +
∂N2

∂a
yj +

∂N3

∂a
yk +

∂N4

∂a
yl

J21 =
∂N1

∂b
xi +
∂N2

∂b
xj +

∂N3

∂b
xk +

∂N4

∂b
xl

J22 =
∂N1

∂b
yi +
∂N2

∂b
yj +

∂N3

∂b
yk +

∂N4

∂b
yl

From above, the elements of [J] were defined and derivative of [N ] can be calculated. At this point, it is necessary to
note that [J], [N ] and its derivative are function of variables a and b.

1.3 Gauss-Legendre quadrature
Gauss-Legendre quadrature is used for integration.

1.3.1 Surface integral
When 4 Gauss points (n = 2) are considered in an finite element, the values of a, b and weight H can be shown in below
table. In this case, the approximation of integral value can be calculated as a summation of 4 times calculation depending
on the coordinate (a, b). Furthermore, since the weight H is equal to 1 for all coordinate, the calculation can be more
simplified. ∫ 1

−1

∫ 1

−1
f (a, b) · da · db ≑

n∑
i=1

n∑
j=1

Hi · Hj · f (ai, bj) =
4∑

kk=1
f (akk, bkk)

i j a b H kk
1 1 -0.57735 02692 -0.57735 02692 1.00000 00000 1
1 2 +0.57735 02692 -0.57735 02692 1.00000 00000 2
2 1 +0.57735 02692 +0.57735 02692 1.00000 00000 3
2 2 -0.57735 02692 +0.57735 02692 1.00000 00000 4

1.3.2 Curvilinear integral
In the thermal conductivity analysis, curvilinear integral is requied on the element side which has heat transfer boundary
condition. The method of curvilinear integral along the element side is shown below.

- a

6
b

i j

kl

(-1,-1) (1,-1)

(1,1)(-1,1)

[1]

[2]

[3]

[4]

Location Value of a and b

Side [1] b = −1 a = s1 and a = s2
Side [2] a = 1 b = s1 and b = s2
Side [3] b = 1 a = s1 and a = s2
Side [4] a = −1 b = s1 and b = s2

s1 s2 H
-0.57735 02692 +0.57735 02692 1.00000 00000

2 General equilibrium equation for static structural analysis using principle of virtual
work

In this section, a derivation of general equilibrium equation for static structural analysis using principle of virtual work is
descrived. Generally, in case that a elastic body subjected to the external force is under the equilibrium state, the virtual
work due to the internal stresses in the body is equal to the virtual work due to the surface force or body force. This
relationship can be expressed as follow.∫

V

{δϵ }{σ}dV =
∫
A

{δu}{S}dA +
∫
V

{δu}{F}dV

2



{δϵ } : virtual strain in stress direction {σ} : internal stress in the doby
{δu} : virtual displacement in force direction {S} : surface force
V : volume of a body {F} : body force (inertia force)
A : area of surface force acts

At this point, it is assumed that a body deems an finite element and strain {ϵ } and displacement {u} at any point in a
fifite element can be expressed using nodal displacement {u} as follows.

{ϵ } = [B]{und}
{u} = [N ]{und}

where, [B] is a strain-displacement relationship matrix, [N ] is an interpolation function matrix. And a stress-strain
relationship of elastic body is applied shown below.

{σ} = [De]{ϵ − ϵ0}

where, [De] is stress-strain relationship matrix, {ϵ0} is initial strain due to temperature change and so on. Next, it is
assumed that {F} can be expressed using nodal inertia force {wnd} as follow.

{F} = [N ]{wnd}

From above, left side of virtual work equation which means virtual work due to internal force becomes as follow.

∫
V

{δϵ }{σ}dV ={δund}T
∫
v

[B]T {σ}dV

={δund}T
(∫

V

[B]T [De][B]dV
)
{und} − {δund}T

(∫
V

[B]T [De]{ϵ0}dV
)

={δund}T [k]{und} − {δund}T { ft }

And right side of virtual work equation which means virtual work due to external force becomes as follow.

∫
A

{δu}{S}dA = {δund}T
(∫

A

[N ]T {S}dA
)
= {δund}T { f }∫

V

{δu}{F}dV = {δund}T
(∫

V

[N ]T [N ]dV
)
{wnd} = {δund}T { fb}

As a result, general form of stiffness equation can be obtained shown below.

[k]{und} = { f } + { ft } + { fb}

[k] =
∫
V

[B]T [De][B]dV (element stiffness matrix)

{ f } =
∫
A

[N ]T {S}dA (nodal external force vector)

{ ft } =
∫
V

[B]T [De]{ϵ0}dV (nodal force vector due to initial strain)

{ fb} =
(∫

V

[N ]T [N ]dV
)
{wnd} (nodal inertia force vector)

3 2D Frame Analysis
3.1 Element stiffnes equation
Element stiffness equation is shown below.

{ f } = [k]{u}
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Ni

Si
Mi

Nj

Sj

Mj


=



E A/L 0 0 −E A/L 0 0
0 12EI/L3 6EI/L2 0 −12EI/L3 6EI/L2

0 6EI/L2 4EI/L 0 −6EI/L2 2EI/L
−E A/L 0 0 E A/L 0 0

0 −12EI/L3 −6EI/L2 0 12EI/L3 −6EI/L2

0 6EI/L2 2EI/L 0 −6EI/L2 4EI/L





ui
vi
θi
u j

vj
θ j


E A axial rigidity N axial force u axial displacement (in x-direction)
EI bending rigidity S Shearing force v deflection (in y-direction)
L element length M bending moment θ rotation

Element displacements and forces Local coordinate system (x-y) and
global coordinate system (X-Y)

3.2 Coordinate transformation matrix
Coordinate transformation matrix from global coordinate system to local coordinate system is shown below.

{u} = [T ]{U}



ui
vi
θi
u j

vj
θ j


=



cos ϕ sin ϕ 0 0 0 0
− sin ϕ cos ϕ 0 0 0 0

0 0 1 0 0 0
0 0 0 cos ϕ sin ϕ 0
0 0 0 − sin ϕ cos ϕ 0
0 0 0 0 0 1





Ui

Vi

Θi

Uj

Vj

Θj


3.3 Stiffness equation in global coordinate system
Stiffness equation in global coordinate system is shown below. This shall be assemblied for all elements.

[K ]{U} = {F} + {Ft } + {Fb}

[K ] = [T ]T [k][T ] : stiffness matrix in global coordinate system
{U} : nodal displacement vector in global coordinate system
{F} : nodal external force vector in global coordinate system
{Ft } = [T ]T { ft } : nodal thermal load vector in global coordinate system
{Fb} = { fb} : nodal inertia force vector in global coordinate system

{ ft } =



−E A · α · ∆T
0
0

E A · α · ∆T
0
0


{ fb} =

γAℓ

2



kh
kv
0
kh
kv
0


E A : axial rigidity α : thermal expansion coefficient ∆T : temperature change
γ : unit weight A : element section area ℓ : element length
kh : horiaontal acceleration kv : vertical acceleration
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Since element nodal thermal load vector { ft } is a correction term of axial force of member, the coordinate transformation
is requied when assemblied. Whereas, since element nodal inertia force vector { fb} is defined using accelerations in
global coordinate system, the coordinate transformation is not required when assemblied. Furthermore, when section
force is calculated from the solution of total stiffness equation, axial force shall be corrected as follows.

N ′
i = Ni + E A · α · ∆T

N ′
j = Nj − E A · α · ∆T

4 2D Truss Analysis
4.1 Element stiffness equation
The element stiffness matrix of 2D truss consists of the matrix which doesn’t include the item of rotation or moment of
2D frame element stiffness matrix. The coordinate transformation matrix also doesn’t include the item of rotation of that
of 2D frame.

The element stiffness equation of 2D truss is shown below.
Ni

Si
Nj

Sj

 =


E A/L 0 −E A/L 0
0 0 0 0

−E A/L 0 E A/L 0
0 0 0 0




ui
vi
u j

vj


E A axial rigidity N axial force u displacement in x-direction
L element length S shearing force v displacement in y-direction

The coordinate transformation matrix of 2D truss is shown below.
ui
vi
u j

vj

 =


cos ϕ sin ϕ 0 0
− sin ϕ cos ϕ 0 0

0 0 cos ϕ sin ϕ
0 0 − sin ϕ cos ϕ




Ui

Vi

Uj

Vj


5 Grid Girder Analysis
5.1 Element stiffness equation
The relationships of section forces between grid girder structure and 2D frame structure are shown below.

Grid girder 2D frame
Torsional moment Axial force
Bending moment Shearing force
Shearing force Bending moment

The element stiffness equation of grid girder structure is shown below.

Ti
Mi

Qi

Tj

Mj

Q j


=



GJ/L 0 0 −GJ/L 0 0
0 4EI/L −6EI/L2 0 2EI/L 6EI/L2

0 −6EI/L2 12EI/L3 0 −6EI/L2 −12EI/L3

−GJ/L 0 0 GJ/L 0 0
0 2EI/L −6EI/L2 0 4EI/L 6EI/L2

0 6EI/L2 −12EI/L3 0 6EI/L2 12EI/L3





ϕi
θi
wi

ϕ j
θ j
wj


GJ tosional rigidity T tosional moment ϕ rotation around x-axis
EI bending rigidity M bending moment θ rotation around y-axis
L element length Q shearing force w deflection in z-direction

Since the coordinate transformation is carried out on X-Y plane, the coordinate transformation matrix is the same as
that for 2D frame analysis.
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Global coordinate system Local coordinate system

(Reference) Torsional constant of rectangular cross section J
The torsional constant J such as for concrete rectangular cross section can be calculated as follow.

J =
hb3

3

{
1 −

192
π5

b

h

∞∑
n=1

[
1

(2n − 1)5
tanh

(2n − 1)πh

2b

]}
h ≧ b

When the coefficient η is introduced, the relationship between coefficient η and the member dimension h/b becomes
shown below.

J =
hb3

η

h/b 1 2 3 5 10 20
η 7.114 4.373 3.798 3.433 3.202 3.098

Above calculation was done by Python program shown below.

import numpy as np

### Result ###
# h/b 1.0 2.0 3.0 5.0 10.0 20.0
# eta 7.114 4.373 3.798 3.433 3.202 3.098
# J=h*b**3/eta

n=100
b=1.0
#hh=np.arange(1.0,21.0,1.0)
hh=np.array([1.0,2.0,3.0,5.0,10.0,20.0])
for idx,elem in enumerate(hh):

h=elem
s=0.0
for i in range(1,n+1):

s=s+1/(2*i-1)**5*np.tanh((2*i-1)*np.pi*h/2/b)
x=1/3*(1-192/np.pi**5*b/h*s)
print(’{0:10.3f} {1:10.3f}’.format(h/b,1/x))

6 2D Stress Analysis
6.1 Finite element equation formulation
Calculation formula for nodal displacements

[k]{u} = { f } + { ft } + { fb}

[k] = t ·
∫
A

[B]T [D][B]dA

{ ft } = t ·
∫
A

[B]T [D]{ϵ0}dA

{ fb} = t · γ ·
∫
A

[N ]T [N ]dA · {w}

Calculation formula for element stresses
{σ} = [D]{ϵ − ϵ0}

6



In the calculation formula for nodal displacements, the thermal load vector { ft } is included in the items of load vector.
However, in the element stresses calculation, the initial strain due to temperature change shall be subtracted from the strain
which are calculated from the nodal displacements shown in above formula.

Equation of relationship between nodal displacement and strain at any points
{ϵ } = [B]{u}

Equation of nodal displacement and displacement at any point
{v} = [N ]{u}

[k] : element stiffness matrix
{u} : nodal displacement vector
{ f } : nodal external force vector
{ ft } : nodal load vector due to temperature change
{ fb} : nodal body force vector
[D] : stress-strain relationship matrix
t, γ : element thickness, element unit weight
{w} : nodal acceleration vector (ratio to ’g’)
{ϵ0} : elemen strain due to temperature change
{ϵ } : element strain at any point
{v} : element displacement at any point

6.2 Stress-strain relationship on 2D elastic problem
AS well known as Hooke’s law, stress-strain relationship for 3D isotropic elastic body can be expressed as follow, where
E is elastic modulus, ν is Poisson’s ratio, α is thermal expansion coefficient, T is temperature change.

ϵx − αT =
1
E
[σx − ν(σy + σz)] ϵy − αT =

1
E
[σy − ν(σz + σx)] ϵz − αT =

1
E
[σz − ν(σx + σy)]

γxy =
2(1 + ν)

E
τxy γyz =

2(1 + ν)
E
τyz γzx =

2(1 + ν)
E
τzx

When considering x − y plane, in the plane stress state,

σz = 0 τyz = 0 τzx = 0

Therefore,

ϵx − αT =
1
E
(σx − νσy) ϵy − αT =

1
E
(σy − νσx) γxy =

2(1 + ν)
E
τxy

=⇒

σx
σy
τxy

 =
E

1 − ν2


1 ν 0
ν 1 0

0 0
1 − ν

2



ϵx − αT
ϵy − αT
γxy


In the plane strain state,

ϵz = 0 → σz = ν(σx + σy) − EαT τyz = 0 τzx = 0

Therefore,

ϵx − αT =
1
E
[(1 − ν2)σx − ν(1 + ν)σy] ϵy − αT =

1
E
[(1 − ν2)σy − ν(1 + ν)σx] γxy =

2(1 + ν)
E
τxy

=⇒

σx
σy
τxy

 =
E

(1 + ν)(1 − 2ν)


1 − ν ν 0
ν 1 − ν 0

0 0
1 − 2ν

2



ϵx − (1 + ν)αT
ϵy − (1 + ν)αT

γxy


The rearranged result of above can be shown as follows.
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Stress and strain components in 2D elastic problem

Stress component: {σ} =

σx
σy
τxy

 Strain component: {ϵ } =

ϵx
ϵy
γxy


Thermal strain component in plane stress state: {ϵ0} =


αT
αT
0


Thermal strain component in plane strain state: {ϵ0} =


(1 + ν)αT
(1 + ν)αT

0


where, tensile stress and tensile strain have positive sign, and temperature increase has positive sign.

Stress-strain relationship in 2D elastic problem

Plane stress state: [De] =
E

1 − ν2


1 ν 0
ν 1 0

0 0
1 − ν

2


E : elastic modulus
ν : Poisson’s ratio

Plane strain state: [De] =
E

(1 + ν)(1 − 2ν)


1 − ν ν 0
ν 1 − ν 0

0 0
1 − 2ν

2


6.3 Formulation as isoparametric element with 4 nodes 4 Gouss points
6.3.1 Introduction of strain-nodal displacement relationship matrix [B]
The displacements u,v at any point in a quadrilateral element are assumed as follows, where coordinate (a,b) is normalized
parameter coordinate with range of [−1,1] for each of a or b, ui, j,k,l and vi, j,k,l are nodal displacements which forms an
element.

u =N1(a, b) · ui + N2(a, b) · u j + N3(a, b) · uk + N4(a, b) · ul
v =N1(a, b) · vi + N2(a, b) · vj + N3(a, b) · vk + N4(a, b) · vl

When the displacements at any point in an element is defined as {u}, and the nodal displacements is defined as {und},
following expression can be obtained using matrix expression.

{u} =
{
u
v

}
=

[
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4

]


ui
vi
u j

vj
uk
vk
ul
vl


= [N ]{und}

The strainat any point in an element {ϵ } can be expressed using nodal displacement {und}.

{ϵ } =



∂u

∂x
∂v

∂y
∂u

∂y
+
∂v

∂x


=



∂N1

∂x
0

∂N2

∂x
0

∂N3

∂x
0

∂N4

∂x
0

0
∂N1

∂y
0

∂N2

∂y
0

∂N3

∂y
0

∂N4

∂y
∂N1

∂y

∂N1

∂x

∂N2

∂y

∂N2

∂x

∂N3

∂y

∂N3

∂x

∂N4

∂y

∂N4

∂x





ui
vi
u j

vj
uk
vk
ul
vl


= [B]{und}
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6.3.2 Element stiffness matrix
A stiffness matrix of 4 nodes isoparametric element [k] can be expressed as follow using the constant element thickness t
and stress-strain relationship matrix [De].

[k] = t
∫ 1

−1

∫ 1

−1
[B]T [De][B] · det(J) · da · db = t ·

4∑
kk=1

{
[B]T [De][B] · det(J)

}
kk

6.3.3 Nodal force vector due to temperature change
Nodal force vector { ft } due to thermal strain {ϵ0} can be expressed as follow.

{ ft } = t
∫ 1

−1

∫ 1

−1
[B]T [De]{ϵ0} · det(J) · da · db = t ·

4∑
kk=1

{
[B]T [De]{ϵ0} · det(J)

}
kk

The component of strain due to temperature change is shown below.

Tp = N1 · ϕi + N2 · ϕ j + N3 · ϕk + N4 · ϕl

Plane stress srate: {ϵ0} =

αTp

αTp

0


Plane strain state: {ϵ0} =


(1 + ν)αTp

(1 + ν)αTp

0


where, α is thermal expansion coefficient, ν is Poisson’s ratio, Tp is temperature change at any point in an element,

{ϕi ϕ j ϕk ϕl}T is nodal temperature change vector, [N1 N2 N3 N4] is elements of interpolation function [N ]. And
temperature increase has positive sign.

6.3.4 Nodal force vector due to body force
Body force (inertia force) at any point in a element {F} = {FBx, FBy}T can be expressed using nodal force vector {w} and
interpolation function[N ].

{F} = [N ]{w}

[N ] =
[
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4

]
{w} = γ ·

{
kh kv kh kv kh kv kh kv

}T
where, γ is element unit weight (mass × gravity acceleration), kh and kv are horiaontal and vertical acceleration (ratio

to ’g’). From above, nodal force vector due to body force (inertia force) { fb} becomes can be calculated as follow.

{ fb} = t ·
∫
A

[N ]T {F}dA = t · γ ·
∫
A

[N ]T [N ]dA · {w′} = t · γ ·
4∑

kk=1

{
[N ]T [N ] · det(J)

}
kk

· {w′}

The vector {w} is defined as follow by pulling out γ.

{w′} =
{
kh kv kh kv kh kv kh kv

}T
7 Axisymmetric Stress Analysis
7.1 Stress-strain relationship and strain-displacement relationship in axisymmetric problem
Regarding the coordinate, it is defined that the direction of rotation axis is set to z-direction, the radius direction is set
to r-direction and circumferential direction is set to θ-direction. Using this coordinate system, stress-strain relationshipin
axisymmetric problem is shown below.
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ϵz − αT =
1
E
{σz − ν(σr + σθ )}

ϵr − αT =
1
E
{σr − ν(σz + σθ )}

ϵθ − αT =
1
E
{σθ − ν(σz + σr )}

γzr =
2(1 + ν)

E
· τzr

where E is elastic modulus, ν is Poisson’s ratio, α is thermal expansion coefficient, T is temperature change. By
transforming above equations, followings can be obtained.

σz =
E

(1 + ν)(1 − 2ν){(1 − ν)ϵz + νϵr + νϵθ − (1 + ν)αT}

σr =
E

(1 + ν)(1 − 2ν){νϵz + (1 − ν)ϵr + νϵθ − (1 + ν)αT}

σθ =
E

(1 + ν)(1 − 2ν){νϵz + νϵr + (1 − ν)ϵθ − (1 + ν)αT}

τzr =
E

2(1 + ν) · γzr

Using matrix and vector format, above can be expressed as follows.

{σ} = [De]{ϵ − ϵ0}

{σ} =


σz
σr
σθ
τzr

 {ϵ } =


ϵz
ϵr
ϵθ
γzr

 {ϵ0} =


αT
αT
αT
0


[De] =

E

(1 + ν)(1 − 2ν)


1 − ν ν ν 0
ν 1 − ν ν 0
ν ν 1 − ν 0

0 0 0
1 − 2ν

2


Strain-displacement relationship is shown below, where w is the displacement in rotation axis direction and u is the

displacement in radius direction.

{ϵ } =


ϵz
ϵr
ϵθ
γzr

 =


∂w

∂z
∂u

∂r
u

r
∂w

∂r
+
∂u

∂z


7.2 Formulation as isoparametric element with 4 nodes 4 Gouss points
7.2.1 Introduction of strain-nodal displacement relationship matrix [B]
The displacements in rotation axis direction w and the displacement in radial direction u at any point in a axisymmetric
quadrilateral element are assumed as follows, where coordinate (a,b) is normalized parameter coordinate with range of
[−1,1] for each of a or b, wi, j,k,l and ui, j,k,l are nodal displacements which forms an element.

w =N1(a, b) · wi + N2(a, b) · wj + N3(a, b) · wk + N4(a, b) · wl

u =N1(a, b) · ui + N2(a, b) · u j + N3(a, b) · uk + N4(a, b) · ul

When the displacements at any point in an element is defined as {u}, and the nodal displacements is defined as {und},
following expression can be obtained using matrix expression.
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{u} =
{
w

u

}
=

[
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4

]


wi

ui
wj

u j

wk

uk
wl

ul


= [N ]{und}

The strain at any point in an element {ϵ } can be expressed as follow using nodal displacement {und}.

{ϵ } =



∂w

∂z
∂u

∂r
u

r
∂w

∂r
+
∂u

∂z


=



∂N1

∂z
0

∂N2

∂z
0

∂N3

∂z
0

∂N4

∂z
0

0
∂N1

∂r
0

∂N2

∂r
0

∂N3

∂r
0

∂N4

∂r

0
N1

r
0

N2

r
0

N3

r
0

N4

r
∂N1

∂r

∂N1

∂z

∂N2

∂r

∂N2

∂z

∂N3

∂r

∂N3

∂z

∂N4

∂r

∂N4

∂z





wi

ui
wj

u j

wk

uk
wl

ul


= [B]{und}

The value of r coordinate at any point in an element is evaluated using following equation.

r = N1 · ri + N2 · rj + N3 · rk + N4 · rl

where, ri , rj , rk , rl are the value of r coordinates which forms an element.

7.2.2 Element stiffness matrix
When an axisymmetric finite element is considered, the volume of small element which is located at r in radial direction
from the rotation center becomes r × dθ × dr × dz. When integrals and load vector is evaluated with angle of 1 radian, the
result of an integral variable conversion for Gauss-Legendre quadrature can be shown as follow.

r × dθ × dr × dz = r × dr × dz = r × det(J) × da × db

As a result, element stiffness matrix of axisymmetric element [k] can be expressed as follow using stress-strain
relationship matrix [De].

[k] =
∫ 1

−1

∫ 1

−1
[B]T [De][B] · r · det(J) · da · db =

4∑
kk=1

{
[B]T [De][B] · r · det(J)

}
kk

8 2D Saturated-Unsaturated Seepage Flow Analysis
8.1 Finite element equation of 2D steady saturated seepage flow problem
Governing equation of steady saturated seepage flow problem with 2D orthotropic material followed Darcy’s law is shown
below in x − y rectangular coordinate system, where the depth is not considered.

kx
∂2ϕ

∂x2 + ky
∂2ϕ

∂y2 = 0

ϕ: total head kx : permeability in x-direction ky: permeability in y-direction

To define the unknown ϕ which satisfies following weak formulation of governing equation for any δϕ is considered
using Galerkin method. ∫

A

δϕ

(
kx
∂2ϕ

∂x2 + ky
∂2ϕ

∂y2

)
dA = 0

When the total head ϕ at any point can be expressed as follow using interpolation function matrix [N ] and nodal total
head vector {h},

ϕ(x, y) = [N (x, y)]{h}
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the weak formulation of governing equation can be expressed as follow.

{δh}T
∫
A

[N ]T
(
kx
∂2ϕ

∂x2 + ky
∂2ϕ

∂y2

)
dA = 0

At this time, the surface integral value shall be zero, because {δh} is arbitrary 　 any nodal total headvector. Next,
using a partial integration formula

f · g′ = ( f · g)′ − f ′ · g

and Green’s theorem ∬
D

(
∂P
∂x
+
∂Q
∂y

)
dA =

∫
C

(
P
∂x
∂n
+Q
∂y

∂n

)
ds

following equation can be derived.

0 =
∫
A

[N ]T
(
kx
∂2ϕ

∂x2 + ky
∂2ϕ

∂y2

)
dA

=

∫
A

kx
©«
∂

(
[N ]T ∂ϕ

∂x

)
∂x

− ∂[N ]T
∂x

∂ϕ

∂x

ª®®¬ + ky
©«
∂

(
[N ]T ∂ϕ

∂y

)
∂y

− ∂[N ]T
∂y

∂ϕ

∂y

ª®®¬
 dA

=

∫
s

[N ]T
(
kx
∂ϕ

∂x
∂x
∂n
+ ky
∂ϕ

∂y

∂y

∂n

)
ds −

∫
A

(
kx
∂[N ]T
∂x

∂[N ]
∂x
+ ky
∂[N ]T
∂y

∂[N ]
∂y

)
dA · {h}

And when the velocity in x and y-directions are defined as vx and vy , following equations can be obtained using Darcy’s
law.

vx = −kx
∂ϕ

∂x
vy = −kx

∂ϕ

∂y

As a result, element finite element equation can be obtained as follow.

[k]{h} = {q}

[k] =
∫
A

(
kx
∂[N ]T
∂x

∂[N ]
∂x
+ ky
∂[N ]T
∂y

∂[N ]
∂y

)
dA

{q} = −
∫
s

[N ]T
(
vx
∂x
∂n
+ vy
∂y

∂n

)
ds

[k]: permeability matrix {h}: nodal total head vector {q}: nodal discharge vector

where, {q} is integral value of velocity vector along the side, and it is easy to understand that it means discharge.

8.2 Formulation as isoparametric element with 4 nodes 4 Gouss points
8.2.1 Permeability matrix
When an isoparametric element has 4 Gauss integral points, an element permeability matrix can be expressed as follow.

[k] =
∫
A

(
kx
∂[N ]T
∂x

∂[N ]
∂x
+ ky
∂[N ]T
∂y

∂[N ]
∂y

)
dA

=

∫ 1

−1

∫ 1

−1

(
kx
∂[N ]T
∂x

∂[N ]
∂x
+ ky
∂[N ]T
∂y

∂[N ]
∂y

)
· det(J) · da · db

=

4∑
kk=1

(
kx
∂[N ]T
∂x

∂[N ]
∂x
+ ky
∂[N ]T
∂y

∂[N ]
∂y

)
· det(J)

Regarding nodal discharge vector {q}, it can be inputted as a equivalent nodal discharge vector directly.
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8.2.2 Average velocity in an element
The total head at any point in an element ϕ can be expressed as follow using interpolation function [N ] and nodal total
head vector {h}.

ϕ = [N ]{h}
Therefore, the mean velocity at any point in an element vx and vy can be expressed as follows using Darcy’s law.

vx = −kx
∂ϕ

∂x
= −kx

∂[N ]
∂x

{h}

vy = −ky
∂ϕ

∂y
= −ky

∂[N ]
∂y

{h}

In actural calculation, following formula can be used to obtain the average velocity in an element.

vx = − kx
4

4∑
kk=1

(
∂[N ]
∂x

{h}
)

vy = −
ky
4

4∑
kk=1

(
∂[N ]
∂y

{h}
)

(Notice) Above discussion is for orthotropic material. However, a program introduced can treat only isotropic material.

8.3 Discussion of extension to unsaturated seepage flow analysis
8.3.1 Saturated seepage flow analysis
A saturated seepage flow anaalysis is a problem to solve following simultaneous linear equations.

[k]{h} = {q}


k11 k12 . . .
k21 k22 . . .
. . . . . . . . .
. . . . . . knn




hunknown
hunknown
. . .

hgiven

 =


qgiven
qgiven
. . .

qunknown


where, {q} is nodal discharge vector, {h} is total head vector, [k] is permeability matrix, and they have following

characteristics.

• Permeability matrix [k] is a constant.
• components of nodal total head vector {h} which are corresponding to known components of nodal discharge vector
{q} are unknown variavles.

• components of nodal total head vector {h} which are corresponding to unknown components of nodal discharge
vector {q} are known variavles.

Therefore, after treatment of the relationship between known and unknown variables, the solution can be obtained by
only one time calculation.

8.3.2 Saturated-unsaturated seepage flow analysis
simultaneous equations in saturated-unsaturated seepage analysis have following characteristics.

• Three types boundary conditions shall be considered such as given discharge, given total head and seepage face
which have the posibilities of occurance of free surface.

• Either discharge or total head becomes known variable except seepage face boundary.
• Both of discharge and total head become unknown variables on the seepage face boundary.
• However, seepage face boundary has only outflow condition, because it touchs to the air. Inaddition, pressure head

on that boundary should be less than or equal to zero.
• The permeabolity matrix in the saturated area is constant. However, the permeability matrix in the unsaturated area

becomes a function of suction head (negative pressure head). Therefore, simultaneous equations shall be solved by
iterative calculation.

As a iterative calculation method, successive substitution method is applied. In this method, initial total head are given
for all nodes, and ibtained solutions are used as input values for next iterative calculation. Regarding the values of initial
total heads, it is better to give the minimum value of z-coordinate of the model (minimum altitude in the model).
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8.3.3 Unsaturated permeability characteristics (van Genuchten model)
As unsaturated permeability characteristics, van Genuchten model shown below is applied, because it is convenient for
programing to treat contineous function as material characteristics.

Se =
{

1
1 + (α · hs)n

}m
n =

1
1 − m

(0 < m < 1)

Kr = (Se)0.5 ·
{
1 −

(
1 − Se1/m

)m}2
(0 ≦ Sr,Kr ≦ 1)

K = Kr · K0

Se Degree of saturation
Kr Relative hydraulic conductivity function
hs Suction head (positive sign)
α Scaling parameter
m Non-dimensional parameter
K Permiability coefficient
K0 Saturated permiability coefficient

9 2D Thermal Conductivity Analysis
9.1 Finite element equation of 2D unsteady thermal conductivity problem
Governing equation of 2D unsteady thermal conductivity problem with 2D isotropic material is shown below in x − y

rectangular coordinate system, where the depth is not considered.

ρc
∂T
∂t
= κ

(
∂2T
∂x2 +

∂2T
∂y2

)
+ ÛQ

T : temperature t : time ÛQ : heat rate
ρ : density c : specific heat κ : heat conductivity coefficient

Heat flux at boundary q can be expressed as follow using Fourier’s law. where n is an outward normal on the boundary.

q = −κ ∂T
∂n

To define the unknown T which satisfies following weak formulation of governing equation for any δT is considered
using Galerkin method. ∫

A

δT
{
κ

(
∂2T
∂x2 +

∂2T
∂y2

)
+ ÛQ − ρc ∂T

∂t

}
dA = 0

When the temperature at any point T can be expressed as follow using interpolation function matrix [N ] and nodal
temperature vector {ϕ},

T(x, y, t) = [N (x, y)]{ϕ(t)}

the weak formulation of governing equation can be expressed as follow.

{δϕ}T
∫
A

[N ]T
{
κ

(
∂2T
∂x2 +

∂2T
∂y2

)
+ ÛQ − ρc ∂T

∂t

}
dA = 0

At this time, the surface integral value shall be zero, because {δϕ} is arbitrary nodal total head vector. Next, using a
partial integration formula

f · g′ = ( f · g)′ − f ′ · g

and Green’s theorem ∬
D

(
∂P
∂x
+
∂Q
∂y

)
dA =

∫
C

(
P
∂x
∂n
+Q
∂y

∂n

)
ds

and using Fourier’s law, the item related to κ becomes shown below.
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∫
A

[N ]T
{
κ

(
∂2h
∂x2 +

∂2h
∂y2

)}
dA

=

∫
A

κ


©«
∂

(
[N ]T ∂h

∂x

)
∂x

− ∂[N ]T
∂x

∂h
∂x

ª®®¬ +
©«
∂

(
[N ]T ∂h

∂y

)
∂y

− ∂[N ]T
∂y

∂h
∂y

ª®®¬
 dA

=

∫
s

[N ]T κ
(
∂h
∂x
∂x
∂n
+
∂h
∂y

∂h
∂x

)
ds −

∫
A

κ

(
∂[N ]T
∂x

∂[N ]
∂x
+
∂[N ]T
∂y

∂[N ]
∂y

)
dA · {ϕ}

= −
∫
s

q[N ]T ds −
∫
A

κ

(
∂[N ]T
∂x

∂[N ]
∂x
+
∂[N ]T
∂y

∂[N ]
∂y

)
dA · {ϕ}

And following equation can be obtained.∫
A

[N ]T
(
ÛQ − ρc ∂T

∂t

)
dA =

∫
A

ÛQ[N ]T dA −
∫
A

ρc[N ]T [N ]dA ·
{
∂ϕ

∂t

}
As a result, element finite element equation can be obtained as follow.

[k]{ϕ} + [c]
{
∂ϕ

∂t

}
= { f }

[k] =
∫
A

κ

(
∂[N ]T
∂x

∂[N ]
∂x
+
∂[N ]T
∂y

∂[N ]
∂y

)
dA

[c] =
∫
A

ρc[N ]T [N ]dA

{ f } =
∫
A

ÛQ[N ]T dA −
∫
s

q[N ]T ds

[k] : heat conduction matrix [c] : heat capacity nmatrix
{ϕ} : nodal temperature vector { f } : nodal heat flux vector

9.1.1 Explanation about boundary condition
In case that heat flux q0 is given on the boundary (side of element)∫

s

q[N ]T ds =
∫
s

q0[N ]T ds

for adiabatic boundary, it becomes q0 = 0. In case that heat transfer boundary (side of element), using heat transfer rate
αc and outside temperature Tc ,

∫
s

q[N ]T ds =
∫
s

αc(T − Tc)[N ]T ds

=

∫
s

αc[N ]T [N ]ds · {ϕ} −
∫
s

αcTc[N ]T ds

Above items shall be added to heat conduction matrix or heat flux vector.

9.1.2 Finite element equation considered boundary condition effects

[k]{ϕ} + [c]
{
∂ϕ

∂t

}
= { f }

[k] =
∫
A

κ

(
∂[N ]T
∂x

∂[N ]
∂x
+
∂[N ]T
∂y

∂[N ]
∂y

)
dA +

∫
s

αc[N ]T [N ]ds

[c] =
∫
A

ρc[N ]T [N ]dA

{ f } =
∫
A

ÛQ[N ]T dA +
∫
s

αcTc[N ]T ds
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[k] : heat conduction matrix. 2nd item is due to effect of heat transfer boundary
[c] : heat capacity matrix
{ϕ} : nodal temperature vector
{ f } : nodal heat flux vector. 1st item is due to effect of heat rate,

2nd item is due to effect of heat trensfer boundary
[N ] : interpolation function matrix
κ, ρ, c : heat conductivity coefficient, density, specific heat
αc , Tc : heat transfer rate, outside temperature of heat transfer boundary
ÛQ : heat rate∫
A
,
∫
S

: surface integral of element area, curvilinear integral along the side

9.1.3 Explanation of heating material
Treatment of Heating material such as cement concrete is considered. The adiabatic temperature rise is assumed as follow.

T = K · (1 − e−α ·t )

T : adiabatic temperature rise K: maximum temperature rise
α: parameter for heat generation rate t: time

K (Tk) and α (Al) in above equation will be inputted as material characteristics. Using above, heat value Q and heat
rate ÛQ can be expressed as follow.

Q = ρ · c · T(t) → ÛQ = ρ · c · Tk · α · e−αt

9.1.4 Solution of unsteady finite element equation
Unsteady finite element equation can be solved using Crank-Nicolson method. The finite element equation of analysis
model is exoressed as follow.

[K ]{Φ} + [C]
{
∂Φ

∂t

}
= {F}

where, nodal temperature vector {Φ}, deviation of nodal temperature vector {∂Φ/∂t} and heat flux vector {F} at the
time t + ∆t/2 are defined as follows.

{
Φ

(
t +
∆

2

)}
=
{Φ(t + ∆t)} + {Φ(t)}

2{
∂Φ

∂t

(
t +
∆

2

)}
=
{Φ(t + ∆t)} − {Φ(t)}

∆t{
F

(
t +
∆

2

)}
=
{F(t + ∆t)} + {F(t)}

2

By ubstituting above relationship to the finite element equation, following equation can be obtained. As a result,
unknown nodal temperature at time t + ∆t can be calculated using known temperature at time t.(

1
2
[K ] + 1

∆t
[C]

)
{Φ(t + ∆t)} =

(
−1

2
[K ] + 1

∆t
[C]

)
{Φ(t)} + {F(t + ∆t)} + {F(t)}

2

If material considered does not have the time dependence, it is possible to calculate the temperature at next step by only
one time calculatio of inverse matrix. For the calculation of inverse matrix, <em>numpy.linalg.inv(A)</em> in Python
can be used.

9.2 Formulation as isoparametric element with 4 nodes 4 Gouss points
The matrices and vectors can be expressed as follows for an isoparametric element with 4 nodes 4 Gouss points, where ℓ
is the length of the side with specified boundary condition of an element.
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Element heat conduction matrix

[k] =
∫
A

κ

(
∂[N ]T
∂x

∂[N ]
∂x
+
∂[N ]T
∂y

∂[N ]
∂y

)
dA +

∫
s

αc[N ]T [N ]ds

=

∫ 1

−1

∫ 1

−1
κ

(
∂[N ]T
∂x

∂[N ]
∂x
+
∂[N ]T
∂y

∂[N ]
∂y

)
· det(J) · da · db +

ℓ

2

∫ 1

−1
αc[N ]T [N ]ds

=

4∑
kk=1
κ

(
∂[N ]T
∂x

∂[N ]
∂x
+
∂[N ]T
∂y

∂[N ]
∂y

)
· det(J) + ℓ

2

2∑
kk=1
αc[N ]T [N ]

Element heat capacity matrix

[c] =
∫
A

ρc[N ]T [N ]dA

=

∫ 1

−1

∫ 1

−1
ρc[N ]T [N ] · det(J) · da · db

=

4∑
kk=1
ρc[N ]T [N ] · det(J)

Heat flux vector

{ f } =
∫
A

ÛQ[N ]T dA +
∫
s

αcTc[N ]T ds −
∫
s

q0[N ]T ds

=

∫ 1

−1

∫ 1

−1
ÛQ[N ]T · det(J) · da · db +

ℓ

2

∫ 1

−1
αcTc[N ]T ds − ℓ

2

∫ 1

−1
q0[N ]T ds

=

4∑
kk=1

ÛQ[N ]T · det(J) + ℓ
2

2∑
kk=1
αcTc[N ]T − ℓ

2

2∑
kk=1

q0[N ]T

10 2D Frame Vibration Analysis
10.1 Equation of motion and Nermark’s β method
For simplification, SDOF (single degree of freedom) system is considered. The equation of motion of SDOF system at
the time t + ∆t is shown below, where dot means a differentiation by time t.

m · Üu(t + ∆t) + c · Ûu(t + ∆t) + k · u(t + ∆t) = f (t + ∆t)
m : mass Üu : acceleration
c : damping coefficient Ûu : velocity
k : stiffness coefficient u : displacement
f : external force

The displacement u and the velocity Ûu at the time t + ∆t can be expressed as follows using Taylor series.

u(t + ∆t) = u(t) + ∆t
1!

· Ûu(t) + (∆t)2
2!

· Üu(t) + (∆t)3
3!

· Ýu(t) + · · ·

Ûu(t + ∆t) = Ûu(t) + ∆t
1!

· Üu(t) + (∆t)2
2!

· Ýu(t) + · · ·

When setting 1/3! = β for 4th term of the right side and 1/2! = γ for 3rd term of right side, following equation van be
obtained omitting the higher terms.

u(t + ∆t) = u(t) + ∆t · Ûu(t) + (∆t)2
2

· Üu(t) + β · (∆t)3 · Ýu(t)

Ûu(t + ∆t) = Ûu(t) + ∆t · Üu(t) + γ · (∆t)2 · Ýu(t)
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Next, the linearization of Ýu is considered as follow.

Ýu(t) = Üu(t + ∆t) − Üu(t)
∆t

Using above relationship, following equations can be obtained.

u(t + ∆t) = u(t) + ∆t · Ûu(t) +
(
1
2
− β

)
(∆t)2 · Üu(t) + β(∆t)2 · Üu(t + ∆t)

Ûu(t + ∆t) = Ûu(t) + (1 − γ) · ∆t · Üu(t) + γ · ∆t · Üu(t + ∆t)

When the application of the equations to finite element method, it is better to solve the equation with unknown
displacement. So, the equations can be rearranged as follows.

Üu(t + ∆t) =
1

β(∆t)2
· [u(t + ∆t) − u(t)] −

1
β∆t

· Ûu(t) −
(

1
2β

− 1

)
· Üu(t)

Ûu(t + ∆t) =
γ

β∆t
· [u(t + ∆t) − u(t)] −

(
γ

β
− 1

)
· Ûu(t) −

(
γ

2β
− 1

)
∆t · Üu(t)

Substituting above to the equation of motion, followings can be obtained.

(
1

β(∆t)2
· m +

γ

β∆t
· c + k

)
· u(t + ∆t) = f (t + ∆t)

+ m ·
[

1
β(∆t)2

· u(t) +
1
β∆t

· Ûu(t) +
(

1
2β

− 1

)
· Üu(t)

]
+ c ·

[
γ

β∆t
· u(t) +

(
γ

β
− 1

)
· Ûu(t) +

(
γ

2β
− 1

)
∆t · Üu(t)

]
Usually, γ = 1/2 is applied, and the case of β = 1/4 means the average acceleration method, the case of β = 1/6 means

the linear acceleration method.

10.2 The equation to be solved with matrix expression
The equations for SDOF can be changed with matrix expressed as follows by fixing γ = 1/2.

10.2.1 Calculation formula of displacement(
1

β(∆t)2
[m] + 1

2β∆t
[c] + [k]

)
{u(t + ∆t)} = { f (t + ∆t)} + [m]{wa(t)} + [c]{wb(t)}

{wa(t)} =
1

β(∆t)2
{u(t)} + 1

β∆t
{ Ûu(t)} +

(
1

2β
− 1

)
{ Üu(t)}

{wb(t)} =
1

2β∆t
{u(t)} +

(
1

2β
− 1

)
{ Ûu(t)} +

(
1

4β
− 1

)
∆t{ Üu(t)}

10.2.2 Calculation formulas of velocity and acceleration
After calculation of the displacement {u(t+∆t)}, the velocity { Ûu(t+∆t)} ane the acceleration { Üu(t+∆t)} can be calculated
using below equations.

{ Ûu(t + ∆t)} = 1
2β∆t

({u(t + ∆t)} − {u(t)}) −
(

1
2β

− 1
)
{ Ûu(t)} −

(
1

4β
− 1

)
∆t{ Üu(t)}

{ Üu(t + ∆t)} = 1
β(∆t)2 ({u(t + ∆t)} − {u(t)}) − 1

β∆t
{ Ûu(t)} −

(
1

2β
− 1

)
{ Üu(t)}

[m] : mass matrix { Üu} : acceleration vector
[c] : damping matrix { Ûu} : velocity vector
[k] : stiffness matrix {u} : displacement vector
{ f } : external force vector
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where, β = 1/4 means average acceleration method, β = 1/6 means linear acceleration method.

10.3 Stiffness matrix and mass matrix

{ f∗} = [k]{u∗}

{ f∗} =
{
Ni Si Mi Nj Sj Mj

}T
{u∗} =

{
ui vi θi u j vj θ j

}T

[k] =



E A/ℓ 0 0 −E A/ℓ 0 0
0 12EI/ℓ3 6EI/ℓ2 0 −12EI/ℓ3 6EI/ℓ2
0 6EI/ℓ2 4EI/ℓ 0 −6EI/ℓ2 2EI/ℓ

−E A/ℓ 0 0 E A/ℓ 0 0
0 −12EI/ℓ3 −6EI/ℓ2 0 12EI/ℓ3 −6EI/ℓ2
0 6EI/ℓ2 2EI/ℓ 0 −6EI/ℓ2 4EI/ℓ


[m] = γ · A · ℓ

g



1/3 0 0 1/6 0 0
0 13/35 11ℓ/210 0 9/70 −13ℓ/420
0 11ℓ/210 ℓ2/105 0 13ℓ/420 −ℓ2/140

1/6 0 0 1/3 0 0
0 9/70 13ℓ/420 0 13/35 −11ℓ/210
0 −13ℓ/420 −ℓ2/140 0 −11ℓ/210 ℓ2/105


[T ] =



cos ϕ sin ϕ 0 0 0 0
− sin ϕ cos ϕ 0 0 0 0

0 0 1 0 0 0
0 0 0 cos ϕ sin ϕ 0
0 0 0 − sin ϕ cos ϕ 0
0 0 0 0 0 1


{ f∗}: elementnodal force vector E: elastic modulus of an element
{u∗}: element nodal displacement vector A: section area of an element
[k] : element stiffness matrix I: moment of inertia of an element
[m] : element mass matrix ℓ: length of an element
[T ] : coordinate transformation matrix γ: unit weight of an element
[T ]T : translocation of matrix [T ] g: gravity acceleration

The coordinate transformation matrix [T ] transforms the displacements or forces in global coordinate system to those
in local coordinate system. The relationship between the stiffness matrix in global coordinate system [K ] and that in local
coordinate system [k] is shown below.

[K ] = [T ]T [k][T ]

The mass matrix in global coordinate system [M] and that in local coordinate system [m] have the same relationship as
the stiffness matrices shown below.

[M] = [T ]T [m][T ]

10.4 Damping matrix
In the actual calculation, a damping matrix [C] should be defined to consider the effect of damping of the structure. In
tis section, definition of the damping matrix is discussed. For simplification, the equation of motion of SDOF system is
considered.

m · Üu + c · Ûu + k · u = −m · Üϕ

Üu +
c

m
· Ûu +

k

m
· u = − Üϕ

Üu + 2 · h · ω · Ûu + ω2 · u = − Üϕ
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h =
c/m

2 · ω ω =

√
k

m

Hear, Rayleigh damping is considered. In the theorem of Rayleigh damping, damping coefficient is poportional to the
mass and stiffnes coefficient. This relationship can be expressed as follow.

c = ζm · m + ζk · k

Considering above, dampong ratio h can be rearranged as follow, whereω is fundamental circular frequency, f is natural
frequency.

h =
c/m

2 · ω =
ζm · m + ζk · k

2 · ω · m
=
ζm

2 · ω +
ζk · ω

2
=

1
4π f

· ζm + π f · ζk

Accordingly, if damping rates hi , hj and natural frequency fi , fj of ith mode and jthe mode, proportional constants ζm
and ζk can be obtained by satisfying above equations simultaneously as shown below.


hi =

1
4π fi

· ζm + π fi · ζk

hj =
1

4π fj
· ζm + π fj · ζk

=⇒


ζm =

4π · fi · fj · ( fj · hi − fi · hj)
f 2
j − f 2

i

ζk =
fj · hj − fi · hi
π( f 2

j − f 2
i )

The natrix expression of damping coefficient is shown below using tow scalar constants ζm and ζk .

[C] = ζm · [M] + ζk · [K ]
As a method to define the constants of Rayleigh damping, following method can be used.

• To set damping rate as a popular value such as h1 = h2 = 0.05.
• To obtain the natural frequencies f1 and f2 for 1st and 2nd mode using eigenvalue analysis.
• To define ζm and ζk using two values of natural frequency ( f1, f2) and two values of damping rate (h1 = h2 = 0.05)

10.5 Eigenvalue analysis
The problem to obtain the fundamental circular frequency is a problem to solve the characteristic equation shown below
as a generalized eigenvalue problem. (

[K ] − ω2[M]
)
{U} = {0}

After getting the fundamental circular frequency ωn, natural frequency fn can be obtained using following equation.

fn =
ωn

2π

11 2D Frame Geometrically Nonlinear Analysis
11.1 Incremental stiffness equation
As well known, an incremental stiffness equation including geometrical nonlinear terms can be expressed shown below:

{∆ f } = [KT ]{∆u} [KT ] = [KL] + [KG]

{∆ f } =
{
∆Ni ∆Si ∆Mi ∆Nj ∆Sj ∆Mj

}T
{∆u} =

{
∆ui ∆vi ∆θi ∆u j ∆vj ∆θ j

}T

[KL] =



E A/ℓ 0 0 −E A/ℓ 0 0
0 12EI/ℓ3 6EI/ℓ2 0 −12EI/ℓ3 6EI/ℓ2
0 6EI/ℓ2 4EI/ℓ 0 −6EI/ℓ2 2EI/ℓ

−E A/ℓ 0 0 E A/ℓ 0 0
0 −12EI/ℓ3 −6EI/ℓ2 0 12EI/ℓ3 −6EI/ℓ2
0 6EI/ℓ2 2EI/ℓ 0 −6EI/ℓ2 4EI/ℓ
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[KG] = P ·



1/ℓ 0 0 −1/ℓ 0 0
0 6/5ℓ 1/10 0 −6/5ℓ 1/10
0 1/10 2ℓ/15 0 −1/10 −ℓ/30

−1/ℓ 0 0 1/ℓ 0 0
0 −6/5ℓ −1/10 0 6/5ℓ −1/10
0 1/10 −ℓ/30 0 −1/10 2ℓ/15


[KT ] : Tangential stiffness matrix of an element
[KL] : Linear stiffness matrix of an element
[KG] : Geometrical non-linear stiffness matrix of an element
P : Axial force of an element (positive sign means tension)
{∆ f } ：Incremental nodal force vector of an element
{∆u} ：Inclemental nodal displacement vector of an element
E, A, I, ℓ : Elastic modulus, section area, moment of inertia, element length
∆N,∆S,∆M : Increments of axial force, shear force and bending moment
∆u,∆v,∆θ : Increments of displacements in axial direction, transverse direction and rotation
Subscripts i and j : variables for node i and node j

11.2 Calculation formulas for Internal forces
11.2.1 Calculation of internal force
The increments of internal force {∆ f ∗} can be obtained using [KL] and {∆u∗}. Where, [KL] is a linear stiffness matrix of
an element, and {∆u∗} is an incremental displacement vector excluding rigid rotation in local coordinate system.

{∆ f ∗} = [KL]{∆u∗}

{∆ f ∗} =
{
∆N∗

i ∆S∗
i ∆M∗

i ∆N∗
j ∆S∗

j ∆M∗
j

}T
{∆u∗} =

{
∆u∗i ∆v∗i ∆θ∗i ∆u∗j ∆v

∗
j ∆θ∗j

}T
∆u∗i = 0 ∆v∗i = 0 ∆θ∗i = (tan θ∗i )k − (tan θ∗i )k−1

∆u∗j = ∆ℓ ∆v∗j = 0 ∆θ∗j = (tan θ∗j )k − (tan θ∗j )k−1

Where, ∆ℓ means the difference of the previous element length and current element length. Regarding the rotation
component, it is taken as the difference of the previous rotation angle (subscript k −1) and current rotation angle (subscript
k).

11.2.2 Elimination of rigid rotation
The method of elimination of rigid rotation is shown below: Using the addition formula for tangent,

dv∗

dx∗
|i = tan θ∗i = tan(θi − R) = tan θi − tan R

1 + tan θi tan R
=

(ℓ + u j − ui) tan θi − (vj − vi)
(ℓ + u j − ui) + (vj − vi) tan θi

dv∗

dx∗
|j = tan θ∗j = tan(θ j − R) =

tan θ j − tan R
1 + tan θ j tan R

=
(ℓ + u j − ui) tan θ j − (vj − vi)
(ℓ + u j − ui) + (vj − vi) tan θ j(

tan R =
vj − vi

ℓ + u j − ui
,

dv
dx

|i = tan θi,
dv
dx

|j = tan θ j
)
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Using above equations, (tan θ∗i )k , (tan θ∗j )k for currenct step and (tan θ∗i )k−1, (tan θ∗j )k−1 for previous step can be obtained.
From these, roration angles excluding rigid rotation in an element can be obtained as follows.

∆θ∗i = (tan θ∗i )k − (tan θ∗i )k−1

∆θ∗j = (tan θ∗j )k − (tan θ∗j )k−1

In these steps, transformation matrix which is calculated from original (initial) coordinates of nodes should be used.

11.3 Arc-Length Method
When simplified scalar load-displacement curve is considered, following equations can be obtained reffering below figure.

KT · ∆U =∆λ · ϕ∆F + ∆R

∆U =∆λ · ∆U0 + ∆UR

(∆s)2 = (∆U)2 + (∆λ · ϕ∆F)2

= (∆λ)2{(∆U0)2 + (ϕ∆F)2} + 2λ · (∆U0 · ∆UR) + (∆UR)2

∆λ =
− (∆U0 · ∆UR) ±

√{
(∆U0)2 + (ϕ∆F)2)

}
· (∆s)2 − (ϕ∆F · ∆UR)2

(∆U0)2 + (ϕ∆F)2

6

?

K
T
·∆

U

-�
∆U

-� ∆λ · ∆U0 -�∆UR

6

?

∆
λ
·ϕ
∆

F

6

?

∆
R

Equilibrium point

KT

(∆s
)
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where, KT : Tangential stiffness ∆λ : Coefficient for external force
∆F : External force increment ∆U0 : Displacement increment for external force
∆R : Unbalanced force increment ∆UR : Displacement increment for unbalanced
∆U : Displacement increment ∆s : Arc length

ϕ : Scaling parameter

11.3.1 Initial value of ∆λ
If ∆UR = 0 is assumed, initial value of ∆λ can be obtained as following equation.

∆λ0 = ±

√
(∆s)2

(∆U0)2 + (ϕ∆F)2

Above equation can take two values, and it should be noted that a sign of ∆λ0 is very important in Arc-Length method.
A sign of ∆λ0 is defined as shown below:

• Define a displacement increment vector {∆U−1} from previous equilibrium point to current equilibrium point.
• Calculate {∆U0} as {∆U0} = [KT ]−1{∆F}.
• Calculate an inner product {∆U−1}T {∆U0} = |∆U−1 | · |∆U0 | · cos θ, where θ is an angle between 2 displacement

increment vectors.
• If an inner product {∆U−1}T {∆U0} ≧ 0, the angle θ is less than or equal to 90 degree. In this case, ∆λ0 has positive

sign.
• If an inner product {∆U−1}T {∆U0} < 0, the angle θ is greater than 90 degree. In this case, ∆λ0 has negative sign.

Regarding the scaling parameter ϕ, it can be obtained as following equation. In this program, recommended value of α
is one (α = 1.0).

ϕ =

√
α

{∆F}T {∆F}

Regarding the arc length ∆s, it can be obtained assuming ∆λ = 1.0.

∆s =
√
{∆U0}T {∆U0} + ϕ2 · {∆F}T {∆F} (∆λ0 = 1.0)

11.3.2 Correction factor ∆λ for iterative calculation
Referring above conceptial figure and replacing ∆s to ∆L, following equation can be obtained.

(∆L)2 = (∆U)2 + (∆λ · ϕ∆F)2

= (∆λ)2{(∆U0)2 + (ϕ∆F)2} + 2∆λ · (∆U0 · ∆UR) + (∆UR)2

From the condition of minimization of (∆L)2, ∆λ can be calculate as following equation.

d(∆L)2
d∆λ

= 0 → ∆λ = − ∆U0 · ∆UR

(∆U0)2 + (ϕ∆F)2

11.3.3 Flowchart for analysis
{F} : Total external force vector at equilibrium point
{∆F} : External incremental force vector
{R} : Internal force vector
{∆R} : Unbalanced force vector
{U} : Total displacement vector
{∆U} : Displacement increment vector
{∆U0} : Displacement increment vector for external force increment
{∆UR} : Displacement increment vector for unbalanced force
{∆U−1} : Displacement increment vector from previous equilibrium point to current equilibrium point
[KT ] : Tangential stiffness matrix including non-linear component
∆s : Arc length
λ : Coefficient for external force increment and displacement increment
∆λ : Increment of coefficient λ
ϕ : Scaling parameter
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A treatment of ∆s and ∆λ in actual programing code is shown below:

• At the initial loading (nnn=1), ∆s is calculated and ∆λ0 is set to 1.0.
• If calculated ∆λ is much less than ∆λ0, the value of ∆s should be increased, because ∆s has been calculated with

the assumption of ∆λ = 1.0.
• If calculated ∆λ is greater than initial value of ∆λ0(= 1.0), the increase of the value of ∆s should be stoped, because

huge value of ∆s causes unexpected behavior of the structure.

# Initial parameter setting for Arc-length method
if nnn==1:

ds0=np.sqrt(np.sum(dis0*dis0)+spara*spara*np.sum(df*df))
ds=ds0
dlam0=1.0

dlam=np.sqrt(ds*ds/(np.sum(dis0*dis0)+spara*spara*np.sum(df*df)))
if np.abs(dlam) < 0.1*np.abs(dlam0): ds=ds*1.2
if np.abs(dlam0) < np.abs(dlam): ds=ds
dlam=np.sqrt(ds*ds/(np.sum(dis0*dis0)+spara*spara*np.sum(df*df)))
if np.sum(dis_ref*dis0)<0.0: dlam=-dlam
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12 2D Frame Buckling Analysis
12.1 Characteristic equation for buckling analysis
Characteristic equation to obtain the buckling load and displacement mode of 2D frame structure is shown below. Although
the shapes of the matrices [KL] and [KG] are same as those of 2D frame geometrically nonlinear analysis, the compressive
axial force P included in [KG] shall have the positive sign. The coefficient λ can be obtained by solving the following
characteristic equation. However, since [KG] includes the axial force P, it is necessary to carry out the one time linear
analysis to obtain the axial force P before eigenvalue analysis.

{[KL] − λ[KG]} {u} = {0}

[KL] =



E A/ℓ 0 0 −E A/ℓ 0 0
0 12EI/ℓ3 6EI/ℓ2 0 −12EI/ℓ3 6EI/ℓ2
0 6EI/ℓ2 4EI/ℓ 0 −6EI/ℓ2 2EI/ℓ

−E A/ℓ 0 0 E A/ℓ 0 0
0 −12EI/ℓ3 −6EI/ℓ2 0 12EI/ℓ3 −6EI/ℓ2
0 6EI/ℓ2 2EI/ℓ 0 −6EI/ℓ2 4EI/ℓ


[KG] = P ·



1/ℓ 0 0 −1/ℓ 0 0
0 6/5ℓ 1/10 0 −6/5ℓ 1/10
0 1/10 2ℓ/15 0 −1/10 −ℓ/30

−1/ℓ 0 0 1/ℓ 0 0
0 −6/5ℓ −1/10 0 6/5ℓ −1/10
0 1/10 −ℓ/30 0 −1/10 2ℓ/15


[KL] : element linear stiffness matrix
[KG] : geometrically nonlinear term of element stiffness matrix
P : element axial force (compression is positive)
{u} : displacement of element
E, A, I, ℓ : elastic modulus, section area, moment of inertia, element length
subscript i， j : node-i and node- j

13 1D Thermal Conductivity Analysis
13.1 Solution of unsteady finite element equation
Equation to be solved by Crank-Nicolson method is shown below.(

1
2
[K ] + 1

∆t
[C]

)
{Φ(t + ∆t)} =

(
−1

2
[K ] + 1

∆t
[C]

)
{Φ(t)} + {F(t + ∆t)} + {F(t)}

2

[K ] : heat conduction matrix [C] : heat capacity matrix
{Φ} : nodal temperature vector {F} : heat flux vector

Each matrix and vector for an element can be expressed as follows.

[k] =
κ · A

ℓ

[
1 −1
−1 1

]
+ αci · A

[
1 0
0 0

]
+ αc j · A

[
0 0
0 1

]
[c] = ρ · c · ℓ · A

[
1/3 1/6
1/6 1/3

]
{ f } =

ÛQ · ℓ · A

2

{
1
1

}
+ αci · Tci · A

{
1
0

}
+ αc j · Tc j · A

{
0
1

}
κ : element heat conductivity coefficient c : element specific heat ρ : element density
ℓ : element length A : element section area ÛQ : element heat rate

αci : heat transfer rate of node-i (if no-heat transfer boundary: αci = 0)
αci : heat transfer rate of node- j (if no-heat transfer boundary: αc j = 0)
Ti : outside temperature of heat transfer boundary at node-i
Tj : outside temperature of heat transfer boundary at node- j
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13.1.1 Explanation of heating material
Treatment of Heating material such as cement concrete is considered. The adiabatic temperature rise is assumed as follow.

T = K · (1 − e−α ·t )

T : adiabatic temperature rise K: maximum temperature rise
α: parameter for heat generation rate t: time

K (Tk) and α (Al) in above equation will be inputted as material characteristics. Using above, heat value Q and heat
rate ÛQ can be expressed as follow.

Q = ρ · c · T(t) → ÛQ = ρ · c · Tk · α · e−αt
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Appendix A Treatment of known and unknown variables in simultaneous linear
equations

In the FEM programs introduced in the site, simultaneous linear equations are solved without reducing the number of
variables after introducing boundary conditions in the equations. In this case, swapping of known variables and unknown
variables is required in the simultaneous linear equations. The swapping method of variables is introduced in this page.

As a simple example, following simultaneous equations with 3 variables are considered.

k11x1 + k12x2 + k13x3 = f1
k21x2 + k22x2 + k23x3 = f2
k31x3 + k32x2 + k33x3 = f3

It is necessary to rearrange the equations shown below to carry out the matrix operation, where x1, x3, f2 are unknown
variables, f1, f3, x2 are known variables.

k11x1 + 0 + k13x3 = f1 − k12x2

k21x2 − f2 + k23x3 = 0 − k22x2

k31x3 + 0 + k33x3 = f3 − k32x2

Considering above, following general expression can be obtained.

A.0.1 Original stiffness equation 

k11 . . . k1i . . . k1j . . . k1n
...
. . .

...
. . .

...
. . .

...
ki1 . . . kii . . . ki j . . . kin
...
. . .

...
. . .

...
. . .

...
k j1 . . . k ji . . . k j j . . . k jn

...
. . .

...
. . .

...
. . .

...
kn1 . . . kni . . . knj . . . knn





δ1
...
δi
...
δj
...
δn


=



f1
...
fi
...
fj
...
fn


A.0.2 Stiffness equation after introducing the boundary conditions
The treatment that the locations of kii and k j j are set to 1 and other elements in the column i and column j are set to zero
shall be done under the condition of known variables of δi and δj . And the effects related to column i and column j shall
be transposed to right side.

k11 . . . 0 . . . 0 . . . k1n
...
. . .

...
. . .

...
. . .

...
ki1 . . . 1 . . . 0 . . . kin
...
. . .

...
. . .

...
. . .

...
k j1 . . . 0 . . . 1 . . . k jn

...
. . .

...
. . .

...
. . .

...
kn1 . . . 0 . . . 0 . . . knn





δ1
...

− fi
...

− fj
...
δn


=



f1
...
0
...
0
...
fn


− δi



k1i
...

kii
...

k ji

...
kni


− δj



k1j
...

ki j
...

k j j

...
knj


Although the stiffness matrix becomes asymmetry by this treatment, the simultaneous equations with thousands variables

can be solved using numpy.linalg ( x = np.linalg.solve(A, b) ) without any stress, because the numpy function has good
performance.

A.0.3 Actural treatment in the program
Some parts of actural Python code for structural analysis are shown below. It shall be noted that known variables shall be
set again into the answer displacements after solving the simultaneous equations.

27



# treatment of boundary conditions
for i in range(0,npoin):

for j in range(0,nfree):
if mpfix[j,i]==1:

iz=i*nfree+j
fp[iz]=0.0
for k in range(0,n):

fp[k]=fp[k]-rdis[j,i]*gk[k,iz]
gk[k,iz]=0.0

gk[iz,iz]=1.0

# solution of simultaneous linear equations
disg = np.linalg.solve(gk, fp)

# recovery of restricted displacements
for i in range(0,npoin):

for j in range(0,nfree):
if mpfix[j,i]==1:

iz=i*nfree+j
disg[iz]=rdis[j,i]

npoin : number of nodes
nfree : degree of freedom of a node
mpfix : array for boundary conditions for all nodes
fp : nodal external force vector
rdis : forced displacement at specified nodes
gk : stiffness matrix in global cooedinate
disg : solution (displacement) of stiffness equation
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