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Desctiption of FEM theory for programing
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1 Interpolation Function and Gauss-Legendre Quadrature

1.1 Introduction

In the finite element method, it is necessary to express the physical quantities of any point in the element with nodal
physical quantities using interpolation function [N]. For exmple, in the thermal conductivity analysis, a temperature at
any point 7' can be expressed as follow.

T = Ni(a,b) - ¢; + N2(a, D) - ¢; + N3(a, b) - ¢ + Na(a,b) - ¢
where, ¢;, ¢;, ¢r, ¢; mean the temperature at node i, j, k, [ for each. If vectoe expression is applied,

T=[N N2 Ns Nag|{¢}=[Nl{g}

where, {¢} means nodal temperature vector. In this section, it is considered to use the Gauss-Legendre quadrature for
4 nodes element and to express the physical quantities using the normalized parameter coordinate (a, b) with range of
[— 1L 1]

1.2 Interpolation function and its derivative

In actural calculation, since a mathematical expression and derivative of interpolation function are required, they will be
derived. After this, the interpolation function N(a, b) is used, where (a, b) is normalized parameter coordinate with range
ofa=[—11]land b=[ — 1,1]. <p/>

1.2.1 Mathematical expression of interpolation function

For a 4 nodes element, following interpolation function can be applied.

I =i(1 —a)(1-b) N, = %(1 +a)(1-b)

Ns =41-‘(1 +a)1+b)  Ny= i(] —a)(1 +b)

1.2.2 Derivative of interpolation function
The partial derivatives of N about @ and b can be obtained s follows.

0N 1 0N, 1 ON; 1 ONy 1
a2 P Ba - Ta P Ba - T a - P
0N 1 ON, 1 ON; 1 ONy 1
a5 - a9 a5 - a1t a5 - a1t a5 - talm9

Next, above equations can be expressed using Jacobi matrix [J] as follows.

L

ON; ON; ON; ON;
Fal il ox x| _ 1) Ba
an, [ = U1 an on; [ =V 4N,
b dy y b
4 4
: dN IN;
g Z(%xl') Z(a—ayf)
[J]=|0a Odal— |iT] =1 :[Jn 112]
dx dy ON; ON; Ja I
% o |2|w] L\a

det(J) = Ji1 - Joo = J12 - Jo1

_ 1 [ —Jn
det(J) |[=J21  Jn

From above,

ONi_ 1 [, 0N 0N, ONi_ 1 [ 0N oM,
ox  det) | oa Tab Wy dew)| e M ab



the each element of [J/] can be shown as follows, where x; j; and y; ;  ; means nodal coordinates which form a finite
element.

.111 = %xl + %XJ + %xk + %xl
Jiz = %y + %)" + %)’k + %yz
da”' da’l 0Oa da
Jop = %xi + %Xj + %xk + %xl
J22 %y + %y' + %)’k + %yz
ab 7! ab 7’ ob ob

From above, the elements of [J] were defined and derivative of [N] can be calculated. At this point, it is necessary to
note that [J], [V ] and its derivative are function of variables a and b.

1.3 Gauss-Legendre quadrature

Gauss-Legendre quadrature is used for integration.

1.3.1 Surface integral

When 4 Gauss points (n = 2) are considered in an finite element, the values of a, b and weight H can be shown in below
table. In this case, the approximation of integral value can be calculated as a summation of 4 times calculation depending
on the coordinate (a, b). Furthermore, since the weight H is equal to 1 for all coordinate, the calculation can be more
simplified.

n n 4
/11 ./:f(a’b) da-db = ZZHi “Hj - flai, by) = Z S (@ick: brek)

i=1 j=1 kk=1

i a b H kk
I 1 -05773502692 -0.5773502692 1.00000 00000 1
1 2 +0.5773502692 -0.5773502692 1.00000 00000 2
2 1 +0.5773502692 +0.5773502692 1.00000 00000 3
2 2 -05773502692 +0.5773502692 1.00000 00000 4

1.3.2 Curvilinear integral

In the thermal conductivity analysis, curvilinear integral is requied on the element side which has heat transfer boundary

condition. The method of curvilinear int%gral along the element side is shown below.

A
(L1 [3] (1,1)
1 k Location Value of a and b
[2] Side[1] | b=-1 a=sjanda=s
> a Side [2] a=1 b=syand b =5,
[4] Side[3] | b=1 a=syand a = s,
; i Side [4] a=-1 b=sandb = sy
-1-1) [11 (1,-1)
51 RY) H
-0.57735 02692 +0.57735 02692 1.00000 00000

2 General equilibrium equation for static structural analysis using principle of virtual
work

In this section, a derivation of general equilibrium equation for static structural analysis using principle of virtual work is
descrived. Generally, in case that a elastic body subjected to the external force is under the equilibrium state, the virtual
work due to the internal stresses in the body is equal to the virtual work due to the surface force or body force. This
relationship can be expressed as follow.

/V{se}{a}dvz /A{éu}{S}dA+/V{6u}{F}dV



{6€} : virtual strain in stress direction {o} : internal stress in the doby

{6u} : virtual displacement in force direction {S} : surface force
14 : volume of a body {F} : body force (inertia force)
A : area of surface force acts

At this point, it is assumed that a body deems an finite element and strain {€} and displacement {u} at any point in a
fifite element can be expressed using nodal displacement {u} as follows.

{€} = [Bl{una}
{u} = [N{una}

where, [B] is a strain-displacement relationship matrix, [N] is an interpolation function matrix. And a stress-strain
relationship of elastic body is applied shown below.

{o} = [Dcl{€ - €}

where, [D,] is stress-strain relationship matrix, {€p} is initial strain due to temperature change and so on. Next, it is
assumed that {F} can be expressed using nodal inertia force {w, 4} as follow.

{F} = [Nl{wna}

From above, left side of virtual work equation which means virtual work due to internal force becomes as follow.

/ (8e} {0}V ={6upa)” / B {o'}av
\%4 v

— (Sttna)” ( i [B]T[De][B]dV) {tna} — (Bttna)” ( I [B]T[De]{fo}dv)
\% \%
— (Stna} [k {tna} — {610na)” 1fi}

And right side of virtual work equation which means virtual work due to external force becomes as follow.

/ (6u}{S}dA = {6una)” ( / [N]T{S}dA) - (Suna)" (S}
A A

[ 0uriF1av = 6usa)” ([ NT N1V 09 = (Guna)7 151
v v
As a result, general form of stiffness equation can be obtained shown below.

[k l{una}t = {f} +{fe} + {fo}

(k] = /V [B)Y[D.][B]dV (element stiffness matrix)

{f}= /A [N {S}dA (nodal external force vector)

{fi} = /v (BT [D.]{€0}dV (nodal force vector due to initial strain)
{fo} = ( /V [N]T[N]dV) {Waa} (nodal inertia force vector)

3 2D Frame Analysis

3.1 Element stiffnes equation

Element stiffness equation is shown below.

{f} = [k|{u}



N; EA/L 0 0 -EA/L 0 0 u;
S 0 12EI/L® 6EI/L? 0 —12EI/L> 6EI/L* | |v;
M| 0 6E1/L? 4EI/L 0 —6EI/L> 2EI/L |]6;
N; -EA/L 0 0 EA/L 0 0 uj
S; 0 —-12EI/L?> -6EI/L? 0 12E1/L®> —6EI/L?| |v;
M; 0 6EI/L? 2EI/L 0 —-6EI/L*> 4EI/L | |6;
EA axial rigidity N axial force u  axial displacement (in x-direction)
EI  bending rigidity S Shearing force v deflection (in y-direction)
L element length M  bending moment 6 rotation
| Y
y
4 S Spvi 4 Vi +
Mi.bi A %
NLUL N;,u X v
< U d
L i M,.6, g
> X
U

Local coordinate system (x-y) and

Element displacements and forces alobal coordinate system (X-Y)

3.2 Coordinate transformation matrix

Coordinate transformation matrix from global coordinate system to local coordinate system is shown below.

{u} =[TH{U}
Uj cos¢ sing O 0 0 0] |U;
Vi —sing cos¢ O 0 0 0l |1V;
0; 0 0 1 0 0 0f])o;
u; 0 0 0 cos¢ sing O] |U;
vj 0 0 0 —sing cos¢ O] |V;
0; 0 0 0 0 0 1| (O,

3.3 Stiffness equation in global coordinate system
Stiffness equation in global coordinate system is shown below. This shall be assemblied for all elements.
[KH{U} = {F} + {Fi} + {Fp}

[K]=[T]"[k][T] : stiffness matrix in global coordinate system

{U} : nodal displacement vector in global coordinate system
{F} : nodal external force vector in global coordinate system
{F;} =[T]"{f;} : nodal thermal load vector in global coordinate system
{Fp}={fp} : nodal inertia force vector in global coordinate system
—-EA-a-AT kn
0 ky
0 YAL |0
{ft}_ EA-a-AT {fb}_T kh
0 ky
0 0
EA : axial rigidity a  : thermal expansion coefficient AT : temperature change
Yy : unit weight A : element section area ¢ : element length
kn : horiaontal acceleration k&, : vertical acceleration



Since element nodal thermal load vector { f } is a correction term of axial force of member, the coordinate transformation
is requied when assemblied. Whereas, since element nodal inertia force vector {fp} is defined using accelerations in
global coordinate system, the coordinate transformation is not required when assemblied. Furthermore, when section
force is calculated from the solution of total stiffness equation, axial force shall be corrected as follows.

N/ =N;+EA-a-AT
N/ =N;-EA-a- AT

4 2D Truss Analysis

4.1 Element stiffness equation

The element stiffness matrix of 2D truss consists of the matrix which doesn’t include the item of rotation or moment of
2D frame element stiffness matrix. The coordinate transformation matrix also doesn’t include the item of rotation of that
of 2D frame.

The element stiffness equation of 2D truss is shown below.

N; EA/L 0 —-EA/L 0] (u;
Si| _ 0 0 0 Of |v;
S  j 0 0 0 0 )4 j
EA axial rigidity N axial force u  displacement in x-direction
L element length S shearing force v displacement in y-direction
The coordinate transformation matrix of 2D truss is shown below.
Uj cos¢ sing 0 0 U;
vi| _|—sing cos¢ 0 0 Vi
uil | O 0 cos¢ sing| |U;
Vi 0 0 —sing cos¢| | V;

5 Grid Girder Analysis

5.1 Element stiffness equation

The relationships of section forces between grid girder structure and 2D frame structure are shown below.

Grid girder 2D frame
Torsional moment | Axial force
Bending moment | Shearing force
Shearing force Bending moment

The element stiffness equation of grid girder structure is shown below.

T; GJ/L 0 0 -GJ/L 0 0 i
M; 0 4EI/L  —6EI/L? 0 2EI/L 6EI/L* | |#;
o;l | o —6EI/L> 12EI/L3 0 —6EI/L*> —-12EI/L3| |w;
T, [ |-GJ/L 0 0 GJ/L 0 0 o
M; 0 2EI/L  —6EI/L? 0 4EI/L 6EI/L? | |6;
o 0 6EI/L*> -12EI/L? 0 6EI/L*> 12EI/L? | |w;
GJ tosional rigidity T  tosional moment ¢  rotation around x-axis
EI  bending rigidity M  bending moment 6  rotation around y-axis
L element length Q  shearing force w  deflection in z-direction

Since the coordinate transformation is carried out on X-Y plane, the coordinate transformation matrix is the same as
that for 2D frame analysis.



z
AﬂNi “ﬁn
—>> —9— X
I eJ
X
Global coordinate system Local coordinate system

(Reference) Torsional constant of rectangular cross section J
The torsional constant J such as for concrete rectangular cross section can be calculated as follow.

hb? 192H & 1 (2n - D)mh
J=—<1- tanh h=2b

3

When the coefficient 7 is introduced, the relationship between coefficient 7 and the member dimension //b becomes
shown below.

h/b 1 2 3 5 10 20
n 7.114 4373 3798 3433 3.202 3.098

Above calculation was done by Python program shown below.

import numpy as np

### Result ###

# h/b 1.0 2.0 3.0 5.0 10.0 20.0
# eta 7.114 4.373 3.798 3.433 3.202 3.098
# J=h*b**3/eta

n=100
b=1.0
#hh=np.arange(1.60,21.0,1.0)
hh=np.array([1.0,2.0,3.0,5.0,10.0,20.0])
for idx,elem in enumerate(hh):
h=elem
s=0.0
for i in range(l,n+1):
s=s+1/(2%1-1)**5*np.tanh ((2*i-1)*np.pi*h/2/b)
x=1/3%(1-192/np.pi**5*b/h*s)
print(’{0:10.3f} {1:10.3f}’.formatCh/b,1/x))

6 2D Stress Analysis

6.1 Finite element equation formulation

Calculation formula for nodal displacements

K1) = (F) + (i) + ()
k=1 /A [BI [D[B]dA
=t /A (B [D]{eo}dA
{fb}:t-y~/[N]T[N]dA~{w}

A

Calculation formula for element stresses

{0} = [Dl{e - €0}




In the calculation formula for nodal displacements, the thermal load vector { f;} is included in the items of load vector.
However, in the element stresses calculation, the initial strain due to temperature change shall be subtracted from the strain
which are calculated from the nodal displacements shown in above formula.

Equation of relationship between nodal displacement and strain at any points

{e} = [B{u}
Equation of nodal displacement and displacement at any point
{v} = [N{u}
[k] : element stiffness matrix
{u} : nodal displacement vector
{f} : nodal external force vector
{ft} : nodal load vector due to temperature change
{fp} : nodal body force vector
[D] : stress-strain relationship matrix
t,y : element thickness, element unit weight
{w}  : nodal acceleration vector (ratio to ’g’)
{€9} : elemen strain due to temperature change
{€} : element strain at any point
{v}  : element displacement at any point

6.2 Stress-strain relationship on 2D elastic problem

AS well known as Hooke’s law, stress-strain relationship for 3D isotropic elastic body can be expressed as follow, where
E is elastic modulus, v is Poisson’s ratio, « is thermal expansion coefficient, T is temperature change.

1 1
& —al = E[O'x - v(oy + 03)] e —al = E[O'y —v(oy + 0y)] € —al = E[O'Z - v(ox +0y)]
2(1 +v) 2(1 +v) 2(1 +v)
Yxy = E Txy Yyz = E Tyz Yzx = E Tzx

When considering x — y plane, in the plane stress state,

o, =0 Ty, =0 Tz =0
Therefore,
1 2(1 +v)
& —aTl = E(a' - voy) e —al = E(a'y —VOoy) Yxy = Ty
1 v 0
1 gx E 4 1 O Zx _ Z;
. y 1— V2 1-v )’y
Xy 2 Xy
In the plane strain state,
€ =0— 0, =v(ox +0y) - EaT Ty, =0 T,x =0
Therefore,
1 ) 1 ) 21 +v)
e —aTl = E[(l = v)ox —v(l +v)oy] € —al = —[(1 -v )O'y —v(1 +v)oy] Yay = oy
Ox E b=y -1 +v)aT
=0y (= 77 5~ v (1+V)(1’T
1 +v)(1-2v)
Txy -

The rearranged result of above can be shown as follows.



Stress and strain components in 2D elastic problem

Oy €x
Stress component: {0} =1 o, Strain component: {€} =1 €
Txy Vxy
aT
Thermal strain component in plane stress state: {€g} = {aT
0
(1+v)aT
Thermal strain component in plane strain state: {€p} = { (1 + v)aT
0

where, tensile stress and tensile strain have positive sign, and temperature increase has positive sign.

Stress-strain relationship in 2D elastic problem

1 v 0
E : i
Plane stress state: [D,] = —— v 1 0 E elastlc n}odul'us
1 -2 1-v vy : Poisson’s ratio
0 0
1-v v 0
. . _ E v l-v 0
Plane strain state: [D,] = —(] -2 . . 1—2y

6.3 Formulation as isoparametric element with 4 nodes 4 Gouss points

6.3.1 Introduction of strain-nodal displacement relationship matrix [B]

The displacements u,v at any point in a quadrilateral element are assumed as follows, where coordinate (a,b) is normalized
parameter coordinate with range of [-1,1] for each of a or b, u; j x; and v; jx; are nodal displacements which forms an
element.

u =Ni(a, b) - u; + No(a, b) - uj + N3(a, b) - ux + Na(a, b) - u;
v =Ni(a, b) - vi + Na(a, b) - v; + N3(a, b) - vi + Na(a, b) - v

When the displacements at any point in an element is defined as {u}, and the nodal displacements is defined as {u,q4},
following expression can be obtained using matrix expression.

uj
Vi
uj

u N1 0 N2 0 N3 0 N4 0 Vi
{u} - { } - [0 N] 0 Nz 0 N3 0 N4 ui - [N]{und}
Vi
uj
Vi

The strainat any point in an element {€} can be expressed using nodal displacement {u,4}.

Ui
ou 6N1 6N2 6N3 8N4 Vi
— -— 0 — 0 — 0 — 0

0x ox ox ox 0x Uj
{}_ ov _ 0 BNI 0 6N2 0 5N3 0 6N4 Vj —[B]{ }
€= ay B ay ay ay Ay | |ux| tnd

ou ov (9N1 6N1 (9N2 aNQ (9N3 (3N3 5N4 (9N4 Vi

ay "ax) lay ax dy ax 8y ox ay oxl|w

Vi



6.3.2 Element stiffness matrix
A stiffness matrix of 4 nodes isoparametric element [k] can be expressed as follow using the constant element thickness ¢

and stress-strain relationship matrix [De].

1=1 / / 1 [D.[B] - det(J) - da-db=1t- Z {[BI"[D.][B] - det())},,

kk=1

6.3.3 Nodal force vector due to temperature change
Nodal force vector { f;} due to thermal strain {€p} can be expressed as follow.

{fe} —t/ / [B)" [D.){€o} - det(J) -da-db =t - Z{ D.{eo} - det())},,

kk=1

The component of strain due to temperature change is shown below.

Ty =N ¢i+Na-pj+ N3~ p + Ny ¢y

aT)y
Plane stress srate: {€p} = a7},
0
(I +v)aT,
Plane strain state: {€g} = { (1 + v)aT),
0

where, « is thermal expansion coefficient, v is Poisson’s ratio, T, is temperature change at any point in an element,
{¢i & o #;}7 is nodal temperature change vector, [Ny N» N3 Ny is elements of interpolation function [N]. And
temperature increase has positive sign.

6.3.4 Nodal force vector due to body force
Body force (inertia force) at any point in a element {F'} = {Fg,, Fp, }T can be expressed using nodal force vector {w} and
interpolation function[N].

{F} =[N|{w}

Ny 0 M 0 M 0 N 0

[N]:0N10N20N30N4

wy=y-{kn kv kn kv kn ko kn k)

where, v is element unit weight (mass X gravity acceleration), kj, and k, are horiaontal and vertical acceleration (ratio
to ’g’). From above, nodal force vector due to body force (inertia force) { fp } becomes can be calculated as follow.

4
U =1- /A NI {F}ydA =1-y- /A INTINTdA- ('} = 1=y > {INTIN]- det(D)} . - (w')
kk=1

The vector {w} is defined as follow by pulling out y.

wy={kn kv ki ko kp ko kp kJ}

7 Axisymmetric Stress Analysis

7.1 Stress-strain relationship and strain-displacement relationship in axisymmetric problem

Regarding the coordinate, it is defined that the direction of rotation axis is set to z-direction, the radius direction is set
to r-direction and circumferential direction is set to #-direction. Using this coordinate system, stress-strain relationshipin
axisymmetric problem is shown below.



1
e —al = E{C"z - v(or +09)}
& —aTl = E{O'r —v(oy + 09)}
€ —al = ={og — v(o, + 0r)}
2(1 +v)
Yar = E *Tzr

where E is elastic modulus, v is Poisson’s ratio, a is thermal expansion coefficient, T is temperature change. By
transforming above equations, followings can be obtained.

o, = m{(l —V)e, +ve +veg — (1 +v)aT}
E

7 Ty (e e = (e veT)
E

o9 = m{veZ +ve + (1 —v)eg — (1 +v)aT}
E

Tor = m‘?’zr

Using matrix and vector format, above can be expressed as follows.

{o} = [Dcl{e - €0}

o € aT

oy & _JaT

COER A BERCES Bt SRR CVES i

Tzr Yzr 0

1-v v % 0

E v 1-v v 0

[De]= ————]| v v 1-v 0
1+v)(1-2v) -2y

0 0 0 >

Strain-displacement relationship is shown below, where w is the displacement in rotation axis direction and u is the
displacement in radius direction.

ow

0z

€ ou
_Je | _ or
{e} = o (= "
Yar r
ow du
or oz

7.2 Formulation as isoparametric element with 4 nodes 4 Gouss points

7.2.1 Introduction of strain-nodal displacement relationship matrix [B]

The displacements in rotation axis direction w and the displacement in radial direction « at any point in a axisymmetric
quadrilateral element are assumed as follows, where coordinate (a,b) is normalized parameter coordinate with range of
[-1,1] for each of a or b, w; j 1,1 and u; ; x,; are nodal displacements which forms an element.

w =Ni(a, b) - w; + Nao(a, b) - wj + N3(a, b) - wi + Nu(a, b) - wy
u =Ni(a, b) - u; + N2(a, b) - uj + N3(a, b) - uy + Na(a, b) - u;

When the displacements at any point in an element is defined as {u }, and the nodal displacements is defined as {u,q4},
following expression can be obtained using matrix expression.

10



w| Mt 0 N 0 N3 0 Ny O Ju| _
{u}_{}_[o Ny 0 N 0 N3 0 Ng||wx = [N {una}

The strain at any point in an element {€} can be expressed as follow using nodal displacement {u,q}.

ow 6[V1 GA& ab@ 8A& wi

—_— —_ 0 —_— 0 —_— 0 —_— 0 .

0z 0z 0z 0z 0z U

ou 0N, N, ON; ONy| | wj

ar O 3 0 3 O 3 O Srllw

- r - r r r r =
{E} u Nl 1\]2 ]v3 N4 Wk [B]{und}

- 0 — 0 — 0 — 0 —

r r r r r Uk

ow ou 6N1 6N] 6N2 8N2 6N3 6N3 6N4 8N4 wi
R + —_— —_— —_— —_— —_— —_— —_— —_— —_—

ar 0z | Or 0z or 0z or 0z or oz | \u

The value of r coordinate at any point in an element is evaluated using following equation.

r=N1 ~rl-+N2-rj+N3-rk+N4~rl
where, ;, 1}, ri, r; are the value of r coordinates which forms an element.

7.2.2 Element stiffness matrix

When an axisymmetric finite element is considered, the volume of small element which is located at r in radial direction
from the rotation center becomes r X df X dr X dz. When integrals and load vector is evaluated with angle of 1 radian, the
result of an integral variable conversion for Gauss-Legendre quadrature can be shown as follow.

rxdfxdrxdz=rxdrxdz=rxdet(J) X daxdb

As a result, element stiffness matrix of axisymmetric element [k] can be expressed as follow using stress-strain
relationship matrix [D,].

1 el 4
[k] =L II[B]T[De][B]-r-det(J)-da-dbz > A{BI'[DAB] - 7 - det())},,

kk=1

8 2D Saturated-Unsaturated Seepage Flow Analysis

8.1 Finite element equation of 2D steady saturated seepage flow problem

Governing equation of steady saturated seepage flow problem with 2D orthotropic material followed Darcy’s law is shown
below in x — y rectangular coordinate system, where the depth is not considered.

¢ ¢

kxﬁ—'—kya_yz =0

¢: total head  ky: permeability in x-direction  k,: permeability in y-direction

To define the unknown ¢ which satisfies following weak formulation of governing equation for any d¢ is considered

using Galerkin method.
%¢ 8¢
0P lkx— +ky—]|dA=0
frooleget +w553)

When the total head ¢ at any point can be expressed as follow using interpolation function matrix [N] and nodal total
head vector {h},

¢(x.y) = [N(x, y)|{h}

11



the weak formulation of governing equation can be expressed as follow.

¢ ¢
T T _— _— =
{6h} /A[N] (kx T2 +ky 8y2) dA=0

At this time, the surface integral value shall be zero, because {0k} is arbitrary  any nodal total headvector. Next,
using a partial integration formula

f-g=0(-8'-f-g

oP 00 0x ay
5+ e aa= (5 + 05

and Green’s theorem

following equation can be derived.

2 2
0:/[N]T kxa—¢+kya—¢ dA
A dx? 0y?

:/ L a([N]Tg_f)_a[N]Ta_«b 6([N]Tg_(§) OINTT ¢
A

k - — | dA
Ox ox Ox T ay dy dy

: r(, 0¢0x ¢ 0y A[N]" O[N] A[N]" 9[N]
_[[N] ( X5 on +k>6y6 )ds—/A(kx 9 9x + ky 3y 9y dA - {h}

And when the velocity in x and y-directions are defined as v, and vy, following equations can be obtained using Darcy’s
law.

As a result, element finite element equation can be obtained as follow.

[k]{h} = {q}

3 A[N]T 4[N] A[N]T 9[N]
L] = ,/A (kx ox 0x ks Jdy dy

@ = [IN 05 5, ) s

[k]: permeability matrix ~ {h}: nodal total head vector {g}: nodal discharge vector

Jas

where, {q} is integral value of velocity vector along the side, and it is easy to understand that it means discharge.

8.2 Formulation as isoparametric element with 4 nodes 4 Gouss points

8.2.1 Permeability matrix
When an isoparametric element has 4 Gauss integral points, an element permeability matrix can be expressed as follow.

dx  Ox

d[N1" o[N o[N]"
//( ] x] ky [y] ])~det(J)-da~db

] = /(k ONT OIN) [ay]T a[N]) "
oL
dy

_ Z (kxﬁ[N] O[N] ck N]T G[N )
kk=1

dx  Ox det(J)

Regarding nodal discharge vector {q}, it can be inputted as a equivalent nodal discharge vector directly.

12



8.2.2 Average velocity in an element
The total head at any point in an element ¢ can be expressed as follow using interpolation function [N ] and nodal total
head vector {h}.

= [N]{h}

Therefore, the mean velocity at any point in an element v, and v, can be expressed as follows using Darcy’s law.

ne= kol = 1 WMy
ox
P AN

Vy = _kya_i = —ky gy]{h}

In actural calculation, following formula can be used to obtain the average velocity in an element.

-5 2% w)
kv (a[ )
—- {h}
4k;l

(Notice) Above discussion is for orthotropic material. However, a program introduced can treat only isotropic material.
8.3 Discussion of extension to unsaturated seepage flow analysis

8.3.1 Saturated seepage flow analysis
A saturated seepage flow anaalysis is a problem to solve following simultaneous linear equations.

[kI{h} = {q}
kit kiz ... | | Aunknown Ggiven
kot ko ... Runknown _ qgiven
knn hgiven Qunknown

where, {¢g} is nodal discharge vector, {h} is total head vector, [k] is permeability matrix, and they have following
characteristics.

* Permeability matrix [k] is a constant.

« components of nodal total head vector {i} which are corresponding to known components of nodal discharge vector
{q} are unknown variavles.

e components of nodal total head vector {&} which are corresponding to unknown components of nodal discharge
vector {q} are known variavles.

Therefore, after treatment of the relationship between known and unknown variables, the solution can be obtained by
only one time calculation.

8.3.2 Saturated-unsaturated seepage flow analysis
simultaneous equations in saturated-unsaturated seepage analysis have following characteristics.

» Three types boundary conditions shall be considered such as given discharge, given total head and seepage face
which have the posibilities of occurance of free surface.

* Either discharge or total head becomes known variable except seepage face boundary.

Both of discharge and total head become unknown variables on the seepage face boundary.

* However, seepage face boundary has only outflow condition, because it touchs to the air. Inaddition, pressure head
on that boundary should be less than or equal to zero.

» The permeabolity matrix in the saturated area is constant. However, the permeability matrix in the unsaturated area
becomes a function of suction head (negative pressure head). Therefore, simultaneous equations shall be solved by
iterative calculation.

As aiterative calculation method, successive substitution method is applied. In this method, initial total head are given
for all nodes, and ibtained solutions are used as input values for next iterative calculation. Regarding the values of initial
total heads, it is better to give the minimum value of z-coordinate of the model (minimum altitude in the model).
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8.3.3 Unsaturated permeability characteristics (van Genuchten model)
As unsaturated permeability characteristics, van Genuchten model shown below is applied, because it is convenient for
programing to treat contineous function as material characteristics.

1 " 1
S, = - = — O0<m<1
¢ {1+(a-hs)"} "t lom O<m<1)
my2
=™ {1 (1=s.1m)" (028K £ 1)
K=K, Ky
Se  Degree of saturation
K, Relative hydraulic conductivity function
hs  Suction head (positive sign)
a  Scaling parameter
m  Non-dimensional parameter
K  Permiability coefficient
Ko Saturated permiability coefficient

9 2D Thermal Conductivity Analysis

9.1 Finite element equation of 2D unsteady thermal conductivity problem

Governing equation of 2D unsteady thermal conductivity problem with 2D isotropic material is shown below in x — y
rectangular coordinate system, where the depth is not considered.

oT 82T LT 8°T £ 0
C— =
P = \ox2 T 5y
T : temperature ¢ : time Q : heatrate
p : density ¢ :specificheat « : heat conductivity coefficient

Heat flux at boundary g can be expressed as follow using Fourier’s law. where n is an outward normal on the boundary.

_or
1= K@n

To define the unknown T which satisfies following weak formulation of governing equation for any 67 is considered

using Galerkin method.
9T  9°T\ . oT
oT —+—|+0—-—pc—dA=0
foor{e(Fa+ e 0=

When the temperature at any point 7' can be expressed as follow using interpolation function matrix [N] and nodal
temperature vector {@},

T(x,y.1) = [N(x, y)[{¢(1)}

the weak formulation of governing equation can be expressed as follow.

O*T 9T ) oT
T _ _
{60} /[N { (ax 3y )+Q pc—a[}dA—O

At this time, the surface integral value shall be zero, because {d¢} is arbitrary nodal total head vector. Next, using a
partial integration formula

fg=0-2-f

//(‘”’ aQ)dA /C(P%+Q%)ds

and using Fourier’s law, the item related to x becomes shown below.

and Green’s theorem
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o (82h 8%
/A[N] {K(ax2 ay )}dA

~ 0 ([N] ax G[N 8[N]T % i

_LK 0x 0x ax -9y dy

B r [(0h ax 0h dh J[N|" 6[N]T O[N]

_/S[N] ((9)5 on  0dy ax)ds_,/A ( 0x Jdy dy )dA~{¢}

T T
- [ainra- [« ([N] M o) a[N])dA @)

And following equation can be obtained.

. ory [ o9
/A[N]T (Q—ch)dA—/AQ[N]TdA—/ CINT'[N]dA - {at}

As aresult, element finite element equation can be obtained as follow.

o¢
[k{o} +[c] {E} ={f}
k] - / . (a[N]T 9IN] , OINT" 9IN]
A

dA
Jox  Ox Jdy dy )

lc] = /A pcINT'[N1dA

)= /A OINT dA - / gINT" ds

[k] : heat conduction matrix [e] : heat capacity nmatrix
{¢} : nodal temperature vector {f} : nodal heat flux vector

9.1.1 Explanation about boundary condition
In case that heat flux g is given on the boundary (side of element)

[ gIN 17 ds = / Gol N ds

for adiabatic boundary, it becomes gg = 0. In case that heat transfer boundary (side of element), using heat transfer rate
a. and outside temperature 7,

[aintas= [aur - N1 as
S S

~ [adN TIN5 - (4) - [T INT s
Above items shall be added to heat conduction matrix or heat flux vector.

9.1.2 Finite element equation considered boundary condition effects

o9
[K1{#} + [c] {E} =)

T T
- /Ak(a[zv] OIN] _ OINY' LN

dA T
o o P ) +/sac[N] [N]ds

M=AWWHMM
{ﬁ=/QWFM+/%nwa
A s
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[k] : heat conduction matrix. 2nd item is due to effect of heat transfer boundary

[e] : heat capacity matrix
{¢} : nodal temperature vector
{f} : nodal heat flux vector. 1st item is due to effect of heat rate,
2nd item is due to effect of heat trensfer boundary
[N] : interpolation function matrix
K, p, ¢ : heat conductivity coefficient, density, specific heat
ac, T, : heat transfer rate, outside temperature of heat transfer boundary
0 : heat rate
fA, fs : surface integral of element area, curvilinear integral along the side

9.1.3 Explanation of heating material
Treatment of Heating material such as cement concrete is considered. The adiabatic temperature rise is assumed as follow.

T=K-(1-e"
T: adiabatic temperature rise K: maximum temperature rise
a: parameter for heat generation rate  : time

K (Tk) and « (Al) in above equation will be inputted as material characteristics. Using above, heat value Q and heat
rate Q can be expressed as follow.

Q=p-c-T(t) — Q=p-cTi-a-e™
9.1.4 Solution of unsteady finite element equation

Unsteady finite element equation can be solved using Crank-Nicolson method. The finite element equation of analysis
model is exoressed as follow.

oD
[K]{<I>}+[C]{E} ={F}

where, nodal temperature vector {®}, deviation of nodal temperature vector {0®/d¢} and heat flux vector {F} at the
time ¢ + Ar/2 are defined as follows.

o (l . é)} _1@@ + A} + {@@)}
2 2
{62 (l N é)} AP + An)} —{®(1)}
ot 2] At
{F (; . %)} _{F@+ At)z} +{F()}

By ubstituting above relationship to the finite element equation, following equation can be obtained. As a result,
unknown nodal temperature at time 7 + At can be calculated using known temperature at time ¢.

{F(t+ A1)} + {F(1)}
2

(51K1+ 3,1€1) @+ a0) = (-31K1 = Lo(€1] @@} +

If material considered does not have the time dependence, it is possible to calculate the temperature at next step by only
one time calculatio of inverse matrix. For the calculation of inverse matrix, <em>numpy.linalg.inv(A)</em> in Python
can be used.

9.2 Formulation as isoparametric element with 4 nodes 4 Gouss points

The matrices and vectors can be expressed as follows for an isoparametric element with 4 nodes 4 Gouss points, where ¢
is the length of the side with specified boundary condition of an element.
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Element heat conduction matrix

O[N]T d[N] O[N]T 9[N]
/AK( P (’9x + 3y dy )dA+/S [N ] [N]ds
1

] IINT" 4[N] ¢ T
// ( + 5 ay)~det(])-da-db+§[10/c[N] [N]ds

(k]

o (OINTT JIN] E)[N]Ta[N] ¢ 2 .
zk;IK( ox ox ' ay oy )'det““sze[N] [N

kk=1

Element heat capacity matrix

//pc[N ]-det(J) - da - db

= Z pc[NTF[N] - det(J)
kk=1

Heat flux vector

(1= [owians [erinyas- [aivTa
/ / QOINT" -det(J)-da - db + = / CTC[N]Tds—g [ llqo[N]Tds

2

—ZQN]T det<J>+—Zac N]T——Zqu]T

kk=1 kk=1 kk=1

10 2D Frame Vibration Analysis

10.1 Equation of motion and Nermark’s 8 method

For simplification, SDOF (single degree of freedom) system is considered. The equation of motion of SDOF system at
the time ¢ + At is shown below, where dot means a differentiation by time ¢.

m-ii(t + At)+c-u(t +At) + k- u(t + Ar) = f(t + Ar)

m : mass ii : acceleration
¢ : damping coefficient # : velocity

k : stiffness coefficient  u : displacement
f : external force

The displacement u and the velocity # at the time ¢ + At can be expressed as follows using Taylor series.

u(t+At)=u(t)+%~u(t)+(A2—t')2-ﬁ(t)+(A3—t')3~u‘(t)+m
u(t+At)_u(t)+g ii(t) + (A )2 () + - -

When setting 1/3! = g for 4th term of the right side and 1 / 2! = v for 3rd term of right side, following equation van be

obtained omitting the higher terms.

u(t + Ar) = u(t) + At - a(r) + (A— ii(t) + B - (A1) - ii(r)

it + Ar) = 1i(t) + At - di(7) + y - (At)2 - §i(f)

17



Next, the linearization of if is considered as follow.

(1) = it + AA? — (1)

Using above relationship, following equations can be obtained.

u(t + Ar) = u(t) + At - a(r) + (% - ﬂ) (AD)? - ii(t) + B(AD? - it + Ar)
u(t +At) =u(t)+ (1 —y)- At -ii(t) +y - At - ii(t + Ar)

When the application of the equations to finite element method, it is better to solve the equation with unknown
displacement. So, the equations can be rearranged as follows.

i(t + Ar) = [ﬁ- [w(t + At) — u(t)] - /%'u(t) - (%— 1) - Gi(t)
it + Ar) = ﬁ%t- [u(t + Af) — u(t)] - (%— 1) () — (%— I)At )

Substituting above to the equation of motion, followings can be obtained.

@-m+[%~c+k)'M(I+AT)=f(t+At)
1 I 1 ..
. m.u(t)+@~u(t)+ ﬁ_l < di(r)
+c- [%-u(t)+(£—l)‘L't(t)+(%—1)At'ﬁ(f)l

Usually, y = 1/2 is applied, and the case of 8 = 1/4 means the average acceleration method, the case of 8 = 1/6 means
the linear acceleration method.

10.2 The equation to be solved with matrix expression

The equations for SDOF can be changed with matrix expressed as follows by fixing y = 1/2.

10.2.1 Calculation formula of displacement

S+ slel s 61) e+ A0} = (74 A0} + [ml0wato) + el 0w}
! U
() = 2o W) + St + (52 -1 )
s (1) = g ) + (551 G0+ 5 -1 vt

10.2.2 Calculation formulas of velocity and acceleration
After calculation of the displacement {u (¢ + At)}, the velocity {#(t + At)} ane the acceleration {#i(f + At)} can be calculated
using below equations.

(it + ADY = —— (i + AN} — {u(D)}) - (i - 1) ()} - (i - 1) A1)}

2BAt 28 4
.. 1 1. 1 ..
{ii(t + A} = B ({u@+ A} - {u@®)}) - M{u(t)} - (% - 1) {ai(1)}
[m] : mass matrix {ii} : acceleration vector
[e¢] : damping matrix {a} : velocity vector
[k] : stiffness matrix {u} : displacement vector

{f} : external force vector

18



where, 8 = 1/4 means average acceleration method, § = 1/6 means linear acceleration method.
10.3 Stiffness matrix and mass matrix

{fs} = [k{us}
{(fit={N: S M; N; S; MJ}T

{wy={wi vi 6 uj v; 9}'}T

EA/C 0 0 -EA/t 0 0
0 12E1/63  6EI/(? 0 —12E1/63  6EI/?
k] = 0 6EI/(? 4EI/C 0 —6EI/f>  2EIJ
—-EA/t 0 0 EA/¢ 0 0
0 —12E1/03 -6EI/? 0 12E1/63 —6EI/(?
0 6E1/(? 2EI/C 0 —6EI/?>  4AEIC
1/3 0 0 1/6 0 0
0 13/35 11¢/210 0 9/70 —13¢£/420
[m] = v-A-£] 0 11¢/210  £2/105 0 13€/420  —£%/140
g 1/6 0 0 1/3 0 0
0 9/70 13¢/420 O 13/35 -11¢£/210
0 —130/420 —(*/140 0 —11£/210  £2/105
cos¢p sing O 0 0 0
—sing cos¢ O 0 0 0
0 0 1 0 0 o
[r] = 0 0 O cos¢ sing O
0 0 0 —sing cos¢p O
0 0 o 0 0 1
{f+}: elementnodal force vector E: elastic modulus of an element
{u.}: element nodal displacement vector ~ A: section area of an element
[k] : element stiffness matrix I: moment of inertia of an element
[m] : element mass matrix ¢: length of an element
[T] : coordinate transformation matrix v: unit weight of an element
[T : translocation of matrix [T] g: gravity acceleration

The coordinate transformation matrix [7'] transforms the displacements or forces in global coordinate system to those
in local coordinate system. The relationship between the stiffness matrix in global coordinate system [K] and that in local
coordinate system [k] is shown below.

(K] = [T]"[K][T]

The mass matrix in global coordinate system [M ] and that in local coordinate system [m] have the same relationship as
the stiffness matrices shown below.

[M] = [T [m][T]

10.4 Damping matrix

In the actual calculation, a damping matrix [C] should be defined to consider the effect of damping of the structure. In
tis section, definition of the damping matrix is discussed. For simplification, the equation of motion of SDOF system is
considered.

meii+c-u+k-u=-m-¢

Iy ¢ . k e
i+ —-u+—-u=—¢
m m

i+2-h-w-i+w u=-¢
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c/m k

= w
2w m

Hear, Rayleigh damping is considered. In the theorem of Rayleigh damping, damping coefficient is poportional to the
mass and stiffnes coefficient. This relationship can be expressed as follow.

c=fm-m+L-k
Considering above, dampong ratio s can be rearranged as follow, where w is fundamental circular frequency, f is natural
frequency.
_ c/m _ gm'm"'é’k'k_ Im +é¢k'w_
2w 2wm 2w 2 4nf
Accordingly, if damping rates h;, h; and natural frequency f;, f; of ith mode and jthe mode, proportional constants

and i can be obtained by satisfying above equations simultaneously as shown below.

_Arfi i (b= i hy)

h L+ wf Lk

= 3 I
hl 4ﬂ'ﬁ é’m‘f‘ﬂﬁ gk _ f}z_f;.z
h-=L-{ +fi - G {:fj'hj_fi'hi
J 47Tfj m J S Sk —7l'(fj2—fl.2)

The natrix expression of damping coefficient is shown below using tow scalar constants ¢, and .

[C] = - [M]+ & - [K]
As a method to define the constants of Rayleigh damping, following method can be used.

* To set damping rate as a popular value such as h; = hy = 0.05.
* To obtain the natural frequencies f; and f, for 1st and 2nd mode using eigenvalue analysis.
¢ To define ¢, and i using two values of natural frequency (fi, f>) and two values of damping rate (h; = hy = 0.05)

10.5 Eigenvalue analysis

The problem to obtain the fundamental circular frequency is a problem to solve the characteristic equation shown below
as a generalized eigenvalue problem.

(1K1 - w?[M1) (U} = (0}
After getting the fundamental circular frequency w,,, natural frequency f,, can be obtained using following equation.

Wn
2r

Jn

11 2D Frame Geometrically Nonlinear Analysis

11.1 Incremental stiffness equation

As well known, an incremental stiffness equation including geometrical nonlinear terms can be expressed shown below:
{Af} =[Kr{Au}  [Kr]=[KL]+[Kg]

T
{Af}y={AN; AS; AM; AN; AS; AM;}
{Au}:{Aui Avi Agi Auj AVj AGJ'}T

EA/C 0 0 —-EA/t 0 0
0 12EI/6®>  6EI/(? 0 —12EI1/6®> 6EI/?
K] = 0 6EI/? AEI /¢ 0 —6EI/(* 2EI/¢
LI=1_EaA/e 0 0 EA/t 0 0
0 —12E1/63 -6EI/? 0 12E1/63 —6EI/¢?
0 6E1/(? 2EI/E 0 —6EI/t>  4EI/C
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1/ 0 0 -1/¢ 0 0
0 6/5¢ 1/10 0 -6/5¢ 1/10
0 1/10 2¢/15 0 —1/10 —¢/30

[KG]=P- -1/t 0 0 1/¢ 0 0

0 -6/5¢ -1/10 O 6/5¢ -1/10

0 /10 -¢/30 0 -1/10 2¢/15
[K7] : Tangential stiffness matrix of an element
[KL] : Linear stiffness matrix of an element
(K] : Geometrical non-linear stiffness matrix of an element
p : Axial force of an element (positive sign means tension)
{Af} ¢ Incremental nodal force vector of an element
{Au} : Inclemental nodal displacement vector of an element
E A LC : Elastic modulus, section area, moment of inertia, element length
AN, AS,AM : Increments of axial force, shear force and bending moment
Au, Av, AG : Increments of displacements in axial direction, transverse direction and rotation
Subscripts i and j  : variables for node i and node j

11.2 Calculation formulas for Internal forces

11.2.1 Calculation of internal force
The increments of internal force {Af*} can be obtained using [K; ] and {Au*}. Where, [K} ] is a linear stiffness matrix of
an element, and {Au*} is an incremental displacement vector excluding rigid rotation in local coordinate system.

{Af"} = [KLl{Au"}

*1 _ * * * * * el
{Af*} = {ANi AST AM; AN]. ASJ. AMj}

* * * * * * T
{Au*} = {Aui Av:  Ag; Au]. Avj AHj}

Au; =0 Avi =0 A7 = (tan 6;); — (tan 6; )x_1
Auj; = AL Avi=0 A6} = (tan 6}) — (tan 6} )k

Where, A¢ means the difference of the previous element length and current element length. Regarding the rotation

component, it is taken as the difference of the previous rotation angle (subscript k — 1) and current rotation angle (subscript
k).

11.2.2 Elimination of rigid rotation
The method of elimination of rigid rotation is shown below: Using the addition formula for tangent,

dv* tan 6; — tan R C+u;j—ui)tan6; — (v; —v;
Lli =tanf; = tan(; — R) = angi —tan® ( j ~ ) i~ = vi)
dx* 1 +tanf; tan R (€+uj—ui)+(vj—v,-)tan6i
dv* tanH,—tanR _ (€+uj—u,~)tan9j—(vj—v,-)

| = tan 0} = tan(6; — R) =

% 1+tan9jtanR_(€+uj—u,~)+(vj—v,-)tan9j
Vi = Vi dv

tanR= ——, —
C+uj—u dx

dv
|,-=tan6’,~, a|j=tan9j
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Uuj

4

Using above equations, (tan 67)y, (tan 9}5) « for currenct step and (tan 67 )1, (tan 0;) k-1 for previous step can be obtained.
From these, roration angles excluding rigid rotation in an element can be obtained as follows.

Af; = (tan 6 )y — (tan 6; )x_1
AH;‘. = (tan Hj)k — (tan Hj)k_l

In these steps, transformation matrix which is calculated from original (initial) coordinates of nodes should be used.

11.3 Arc-Length Method

When simplified scalar load-displacement curve is considered, following equations can be obtained reffering below figure.

Kr - AU =AA - pAF + AR
AU =AA - AUy + AUR

(As)? = (AU)? + (AL - ¢AF)?
= (AD*{(AU)? + ($AF)*} + 21 - (AUy - AUR) + (AUR)?

= (AUp - AUR) = \[{(AUO)? + (BAF )} - (As)? = (GAF - AUR)?
M= (AU + (4AFY

AU ' x
<
1 Equilibrium point
) s
@s\ ~
<
AA - AUy AUR
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where, K7y : Tangential stiffness AAd : Coeflicient for external force

AF  : External force increment AUy  : Displacement increment for external force
AR  : Unbalanced force increment AUg : Displacement increment for unbalanced
AU : Displacement increment As : Arc length

1) : Scaling parameter

11.3.1 Initial value of A1
If AUR = 0 is assumed, initial value of A1 can be obtained as following equation.

B (As)?
Ao = £\ R0+ APy

Above equation can take two values, and it should be noted that a sign of Ady is very important in Arc-Length method.
A sign of Ay is defined as shown below:

* Define a displacement increment vector {AU_; } from previous equilibrium point to current equilibrium point.

* Calculate {AUy} as {AUy} = [Kr| ' {AF}.

+ Calculate an inner product {AU_{}T {AUy} = |AU_i| - |AUp| - cos 6, where 6 is an angle between 2 displacement
increment vectors.

« If an inner product {AU_;}Y {AUp} = 0, the angle @ is less than or equal to 90 degree. In this case, A1y has positive
sign.

« If an inner product {AU_;}T {AUp} < 0, the angle 6 is greater than 90 degree. In this case, Al has negative sign.

Regarding the scaling parameter ¢, it can be obtained as following equation. In this program, recommended value of @

is one (a = 1.0).
a
=\ T
{AF}T{AF}

Regarding the arc length As, it can be obtained assuming A1 = 1.0.

As = \/{AUO}T{AUQ} + @2 {AF}T{AF} (Ao = 1.0)

11.3.2 Correction factor AA for iterative calculation
Referring above conceptial figure and replacing As to AL, following equation can be obtained.

(AL)* = (AU)? + (A1 - ¢AF)?
= (AD*{(AU)? + (pAF)*} + 2A1 - (AUy - AUR) + (AUR)?

From the condition of minimization of (AL)?, A1 can be calculate as following equation.

d(AL)? AUy - AUR
=0 - M=-—-"—7F"F7—"-—"=
dAA (AUp)? + (pAF)?
11.3.3 Flowchart for analysis
{F} : Total external force vector at equilibrium point
{AF} : External incremental force vector
{R} : Internal force vector
{AR} : Unbalanced force vector
{U} : Total displacement vector
{AU} : Displacement increment vector
{AUp} : Displacement increment vector for external force increment
{AUg} : Displacement increment vector for unbalanced force
{AU_;} : Displacement increment vector from previous equilibrium point to current equilibrium point
[Kr] : Tangential stiffness matrix including non-linear component
As : Arc length
A : Coeflicient for external force increment and displacement increment
AQ : Increment of coefficient A
1) : Scaling parameter
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Loading

Set external force increment {AF}

Process before iteration

i=0, 2=0

{AUo} = [K7] " {AF}

As = V{AU)T (AU} + 62 - {AF}T{AF}

Ad = \/ (8" positive value
{AU}T{AUp} + ¢ - {AF}T{AF}

if {AU_1} {AUo} < 0) Ad = -Ad

{AU} = A1 - {AUy}

{AU_,} = {0} clear reference displacement vector

Iterative calculation

A=21+A1

{U} ={U} + {AU}

{AU.1} = {AU-1} + {AU}

Calculate Internal force vector{R}

{AR} = ({F} + A- {AF}) - {R} Unbalanced force vector

Converged ? Yes

No

Calculation of Displacement increment
{AUy} = [Kr]"*{AF} Disp. increment for External force
{AUR} = [Kr]"*{AR} Disp. increment for Unbalanced force
B {AUY {AUR}

{AUGYT {AUo} + ¢% - {AF}T{AF}
{AU} = A1 - {AUp} + {AUR}

Al =

{F}={F}+ A= {AF}
Determine an equilibrium point

Note) Condition for convergence: |AU;/U;| < le — 3

A treatment of As and AA in actual programing code is shown below:

At the initial loading (nnn=1), As is calculated and AAy is set to 1.0.

¢ If calculated AA is much less than AAy, the value of As should be increased, because As has been calculated with
the assumption of A4 = 1.0.

e If calculated AA is greater than initial value of Adg(= 1.0), the increase of the value of As should be stoped, because
huge value of As causes unexpected behavior of the structure.

# Initial parameter setting for Arc-length method

if nnn==1:
dsO®=np.sqrt(np.sum(dis®@*dis®)+spara*spara*np.sum(df*df))
ds=ds0
dlam0®=1.0

dlam=np.sqrt(ds*ds/(np.sum(dis®@*dis®)+spara*spara*np.sum(df*df)))
if np.abs(dlam) < 0.1*np.abs(dlam®): ds=ds*1.2

if np.abs(dlam®) < np.abs(dlam): ds=ds
dlam=np.sqrt(ds*ds/(np.sum(dis®@*dis®)+spara*spara*np.sum(df*df)))
if np.sum(dis_ref*dis0)<0.0: dlam=-dlam
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12 2D Frame Buckling Analysis

12.1 Characteristic equation for buckling analysis

Characteristic equation to obtain the buckling load and displacement mode of 2D frame structure is shown below. Although
the shapes of the matrices [K7 ] and [K] are same as those of 2D frame geometrically nonlinear analysis, the compressive
axial force P included in [Kg] shall have the positive sign. The coefficient A can be obtained by solving the following
characteristic equation. However, since [K¢ | includes the axial force P, it is necessary to carry out the one time linear
analysis to obtain the axial force P before eigenvalue analysis.

{[KL] - A[KG]} {u} = {0}

EA/t 0 0 —-EA/t 0 0
0 12E1/63  6EI/(? 0 —12E1/63 6EI/?
K] = 0 6EI/? AEI/¢ 0 —6EI/¢* 2EI/¢
LI=1_EA/e 0 0 EA/C 0 0
0 —12EI1/03 -6EI/? 0 12E1/63 —6EI/(?
0 6E1/? 2EI/ 0 —-6EI/*  AEIJ¢C
1/¢ 0 0o -1/t 0 0

0 6/5¢ 1/10 0 —6/5¢ 1/10
0 1/10 2¢/15 0 —1/10 —£/30

Kel=P-1_10 o 0 1/t 0 0
0 -6/5¢ -1/10 O 6/5¢ -1/10
0 1/10 —-¢/30 0 -1/10 2¢/15
[K.] : element linear stiffness matrix
[KG] : geometrically nonlinear term of element stiffness matrix
P : element axial force (compression is positive)
{u} . displacement of element
E AL : elastic modulus, section area, moment of inertia, element length

subscripti, j : node-i and node-j

13 1D Thermal Conductivity Analysis

13.1 Solution of unsteady finite element equation

Equation to be solved by Crank-Nicolson method is shown below.

1 1 (1 1 {F(t+A)}+{F()}
(5["] + A—Z[C]) (@1 + A0} = (‘5“‘] + E[C]) (@0} + ;
[K] : heat conduction matrix [C] : heat capacity matrix

{®} : nodal temperature vector {F} : heat flux vector

Each matrix and vector for an element can be expressed as follows.

-A _
[k]:KT[—ll 11

) 13 1/6
[”]‘p'c‘f'A[m 1/3]

Q- C-Af 1 0
{f}= 2 {1}+aci'Tci'A{O}"'a'cj'ch'A{l}

0 1

1 0
+C¥Ci‘A[0 0

k : element heat conductivity coefficient ¢ : element specific heat p : element density
¢ : element length A :element sectionarea O : element heat rate
a.; : heat transfer rate of node-i (if no-heat transfer boundary: a.; = 0)

@¢; : heat transfer rate of node-j (if no-heat transfer boundary: a.; = 0)
T; : outside temperature of heat transfer boundary at node-i
T; : outside temperature of heat transfer boundary at node-j
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13.1.1 Explanation of heating material
Treatment of Heating material such as cement concrete is considered. The adiabatic temperature rise is assumed as follow.

T=K-(1-e"

T: adiabatic temperature rise K: maximum temperature rise
a: parameter for heat generation rate  f: time

K (Tk) and a (Al) in above equation will be inputted as material characteristics. Using above, heat value Q and heat
rate O can be expressed as follow.

Q=p-c-Tt) — Q=p-c-Ti-a-e
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Appendix A Treatment of known and unknown variables in simultaneous linear
equations

In the FEM programs introduced in the site, simultaneous linear equations are solved without reducing the number of

variables after introducing boundary conditions in the equations. In this case, swapping of known variables and unknown

variables is required in the simultaneous linear equations. The swapping method of variables is introduced in this page.
As a simple example, following simultaneous equations with 3 variables are considered.

ki1x1 + kioxo + kizxs = fi
ko1x2 + kopxo + kozxz = fo
kaixs + kapxo + k3zxz = f

It is necessary to rearrange the equations shown below to carry out the matrix operation, where xi, x3, f» are unknown
variables, fi, f3, x, are known variables.

kiixr + 0+ kizxz = fi —kiaxo
ka1x2 — o + kpzxz = 0 — kaoxp
k31xz + 0+ k3zxz = f3 — kaox

Considering above, following general expression can be obtained.

A.0.1 Oiriginal stiffness equation

(kiy oo ki oo ki ... kin| (61 fi
o A
T | M I
PR U SRS S | P B S

A.0.2 Stiffness equation after introducing the boundary conditions

The treatment that the locations of k; and k;; are set to 1 and other elements in the column i and column j are set to zero
shall be done under the condition of known variables of ¢; and 6;. And the effects related to column i and column j shall
be transposed to right side.

(ki1p ... 0 ... 0 ... k] (6 Nil ki kij
kil R A | R kin —ﬁ 0 kii k,'j
A N LR SR B B R S
kj1 ... 0 ... 1 ... kjn —f} 0 kji kjj
knt . 0 . 0 ... kun) | 6n fa Kni knj

Although the stiffness matrix becomes asymmetry by this treatment, the simultaneous equations with thousands variables
can be solved using numpy.linalg ( x = np.linalg.solve(A, b) ) without any stress, because the numpy function has good
performance.

A.0.3 Actural treatment in the program

Some parts of actural Python code for structural analysis are shown below. It shall be noted that known variables shall be
set again into the answer displacements after solving the simultaneous equations.
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# treatment of boundary conditions
for i in range(0,npoin):
for j in range(0,nfree):
if mpfix[j,il==1:
iz=i*nfree+j
fp[iz]=0.0
for k in range(®,n):
fpl[k]l=fp[k]l-rdis[j,i]l*gk[k,iz]
gk[k,iz]=0.0
gk[iz,iz]=1.0

# solution of simultaneous linear equations
disg = np.linalg.solve(gk, f£fp)

# recovery of restricted displacements
for i in range(0,npoin):
for j in range(0,nfree):
if mpfix[j,i]==1:
iz=i*nfree+j
disg[iz]=rdis[j,i]

npoin : number of nodes

nfree  : degree of freedom of a node

mpfix : array for boundary conditions for all nodes
fp : nodal external force vector

rdis : forced displacement at specified nodes

gk : stiffness matrix in global cooedinate

disg : solution (displacement) of stiffness equation
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