多重円筒理論による円形圧力水路設計式

目次

1.	概要	1
2.	基礎方程式	1
2.1	完全弾性体	1
2.2	周方向 no-tension 材料	3
3.	各材料への基礎方程式の適用	3
3.1	岩盤	3
3.2	鉄筋	4
3.3	内圧を受けるコンクリート (周方向 no-tension 材料)	4
3.4	外圧を受けるコンクリート (完全弾性体)	4
4.	連立方程式の作成	5
4.1	内圧を受ける単鉄筋断面....................................	6
4.2	内圧を受ける複鉄筋断面....................................	7
4.3	外圧を受ける単鉄筋断面....................................	8
4.4	外圧を受ける複鉄筋断面....................................	9
5.	解析事例	10
5.1	理論解との比較	10
5.2	FEM 解析結果との比較	11
6.	入出力データ	13
6.1	入力データ	13
6.2	出力データ	13

1. 概要

内・外圧を受ける中心軸方向に均一な厚肉円筒を平面ひずみ状態でモデル化する.この場合,せん断ひず み・せん断応力は0となり考慮する必要はない。

ここでは,鉄筋を有する円形圧力水路への適用を考慮し,以下の考え方を採用する.

○ 圧力水路の構造は、鉄筋コンクリート構造とする.

○ 内圧を受ける場合のモデル化範囲は圧力水路の覆工および岩盤とする.

○ 内圧を受ける覆エコンクリートはひび割れ発生を前提とし、周方向の引張応力は分担しない.

○ 外圧は覆エコンクリート背面に作用するものとし、岩盤はモデル化しない.

○ 外圧を受ける覆工には圧縮力が作用するため、コンクリート・鉄筋とも完全弾性体とする.

○ 温度変化量は、簡略化のため、覆工内に均一なものを考え、岩盤内での温度変化は考慮しない.

○ 水路コンクリートでは鉄筋のかぶりが比較的大きいため、これを考慮する.

なお, 基礎理論は, Timoshenko & Goodier "Theory of Elasticity, Chapter 13 Thermal Stress" を参考 にした.

2. 基礎方程式

2.1 完全弾性体

均一内圧・均一断面の厚肉円筒モデルでは、せん断応力およびせん断ひずみは考慮する必要は無いため、完 全弾性体の一般的な応力-ひずみ関係は、以下のとおりとなる.

$$\begin{cases} \epsilon_r - \alpha T = \frac{1}{E} \{ \sigma_r - \nu (\sigma_\theta + \sigma_z) \} \\ \epsilon_\theta - \alpha T = \frac{1}{E} \{ \sigma_\theta - \nu (\sigma_z + \sigma_r) \} \\ \epsilon_z - \alpha T = \frac{1}{E} \{ \sigma_z - \nu (\sigma_r + \sigma_\theta) \} \end{cases}$$
(1)

ここに、r、 θ 、zはそれぞれ、厚肉円筒の半径方向、円周方向、軸方向を示し、 σ は直応力、 ϵ は直ひずみ、Eは弾性係数、 ν はポアソン比を示す、また、 α は材料の熱膨張係数、Tは温度変化量である.

平面ひずみでは, $\epsilon_z = 0$ より,

$$\begin{cases} \sigma_z = \nu(\sigma_r + \sigma_\theta) - E\alpha T\\ \epsilon_r - \alpha T = \frac{1}{E} \{ (1 - \nu^2)\sigma_r - \nu(1 + \nu)\sigma_\theta \}\\ \epsilon_\theta - \alpha T = \frac{1}{E} \{ (1 - \nu^2)\sigma_\theta - \nu(1 + \nu)\sigma_r \} \end{cases}$$
(2)

よって,

$$\begin{cases} \sigma_r = \frac{E}{(1+\nu)(1-2\nu)} \{(1-\nu)\epsilon_r + \nu\epsilon_\theta - (1+\nu)\alpha T\} \\ \sigma_\theta = \frac{E}{(1+\nu)(1-2\nu)} \{\nu\epsilon_r + (1-\nu)\epsilon_\theta - (1+\nu)\alpha T\} \end{cases}$$
(3)

また、ひずみ-変位関係は、半径方向変位を u として、以下のとおりとなる.

$$\epsilon_r = \frac{du}{dr} \qquad \epsilon_\theta = \frac{u}{r} \tag{4}$$

厚肉円筒における応力の釣り合い式は、以下のとおり.

$$\frac{d\sigma_r}{dr} + \frac{\sigma_r - \sigma_\theta}{r} = 0 \tag{5}$$

よって

$$\frac{d\sigma_r}{dr} + \frac{\sigma_r - \sigma_\theta}{r} = \frac{E(1-\nu)}{(1+\nu)(1-2\nu)} \left\{ \frac{d^2u}{dr^2} + \frac{1}{r}\frac{du}{dr} - \frac{u}{r^2} - \frac{(1+\nu)}{(1-\nu)} \cdot \alpha \frac{dT}{dr} \right\} = 0$$
(6)

$$\frac{d^2u}{dr^2} + \frac{1}{r}\frac{du}{dr} - \frac{u}{r^2} = \frac{(1+\nu)}{(1-\nu)} \cdot \alpha \frac{dT}{dr} \longrightarrow \frac{d}{dr} \left[\frac{1}{r}\frac{d(ru)}{dr}\right] = \frac{(1+\nu)}{(1-\nu)} \cdot \alpha \frac{dT}{dr}$$
(7)

ここで,

$$\frac{d}{dr} \left[\frac{1}{r} \frac{d(ru)}{dr} \right] = 0 \qquad \rightarrow \quad -\Re \Re \qquad \qquad u = C_1 \cdot r + \frac{C_2}{r} \qquad (8)$$

$$d \left[1 d(ru) \right] \quad (1+\nu) \quad dT \qquad \qquad \qquad 1+\nu \quad 1 \quad f^r$$

$$\frac{d}{dr} \left[\frac{1}{r} \frac{d(ru)}{dr} \right] = \frac{(1+\nu)}{(1-\nu)} \cdot \alpha \frac{dT}{dr} \qquad \rightarrow \quad \text{\$} \text{\$} \text{\$} \qquad u = \frac{1+\nu}{1-\nu} \cdot \alpha \frac{1}{r} \int_{a}^{r} Tr dr \qquad (9)$$

以上より,変位および応力は以下のとおり整理される.なお積分記号中のr, a はそれぞれ,当該材料任意 点の半径座標,当該材料の半径座標が小さい側の境界の半径座標である.

$$\begin{cases} u = \frac{1+\nu}{1-\nu} \cdot \alpha \frac{1}{r} \int_{a}^{r} Tr dr + C_{1} \cdot r + \frac{C_{2}}{r} \\ \sigma_{r} = -\frac{\alpha E}{1-\nu} \cdot \frac{1}{r^{2}} \int_{a}^{r} Tr dr + \frac{E}{(1+\nu)(1-2\nu)} \cdot C_{1} - \frac{E}{(1+\nu)} \frac{C_{2}}{r^{2}} \\ \sigma_{\theta} = \frac{\alpha E}{1-\nu} \cdot \frac{1}{r^{2}} \int_{a}^{r} Tr dr - \frac{\alpha ET}{1-\nu} + \frac{E}{(1+\nu)(1-2\nu)} \cdot C_{1} + \frac{E}{(1+\nu)} \frac{C_{2}}{r^{2}} \\ \sigma_{z} = -\frac{\alpha ET}{1-\nu} + \frac{2\nu E}{(1+\nu)(1-2\nu)} \cdot C_{1} \end{cases}$$
(10)

2.2 周方向 no-tension 材料

内圧を受ける覆エコンクリートを対象として、周方向の引張応力を負担しない、周方向 no-tension 材料の 基礎方程式を求める.

応力の釣り合い式において, $\sigma_{\theta} = 0$ であることから,

$$\frac{d\sigma_r}{dr} + \frac{\sigma_r}{r} = 0 \tag{11}$$

no-tension 材料は1軸材料とみなし、ポアソン比 $\nu = 0$ とすれば、ひずみ-変位関係を用いて、

$$\sigma_r = E\epsilon_r - E\alpha T \quad \to \quad \sigma_r = E\frac{du}{dr} - E\alpha T \quad \left(\epsilon_r = \frac{du}{dr}\right)$$
 (12)

$$\frac{d\sigma_r}{dr} + \frac{\sigma_r}{r} = E\left\{\frac{d^2u}{dr^2} + \frac{1}{r}\frac{du}{dr} - \alpha\left(\frac{dT}{dr} + \frac{T}{r}\right)\right\} = 0$$
(13)

ここで,

$$\frac{d^2u}{dr^2} + \frac{1}{r}\frac{du}{dr} = 0 \qquad \rightarrow \quad -\Re \Re \qquad u = C_1 + C_2 \ln(r) \qquad (14)$$

$$\frac{d^2u}{dr^2} + \frac{1}{r}\frac{du}{dr} - \alpha \left(\frac{dT}{dr} + \frac{T}{r}\right) \qquad \rightarrow \quad \Re \Re \qquad u = \alpha \int_a^r T dr \qquad (15)$$

以上より、変位および応力は以下のとおり整理される.なお、 $C_1 \ge C_2$ の順序は、連立方程式を行列を用いて解く時に対角項が0とならないようこの順序としている.また積分記号中のr、aはそれぞれ、当該材料 任意点の半径座標、当該材料の半径座標が小さい側の境界の半径座標である.

$$\begin{cases} u = C_1 + C_2 \ln(r) + \alpha \int_a^r T dr \\ \sigma_r = E \frac{C_2}{r} \end{cases}$$
(16)

3. 各材料への基礎方程式の適用

上記の基礎方程式を圧力水路を構成する各材料に適用する.この際,以下の仮定を導入する.

- 岩盤は完全弾性体とする.
- 鉄筋は完全弾性体とする.鉄筋は梁要素として扱う方法もあるが、ここでは理論の統一性から厚さの薄 い円筒要素として扱う.
- 内圧を受けるコンクリートは周方向 no-tension 材料とする.
- 外圧を受けるコンクリートは完全弾性体とする.
- 軸方向直応力 *σz* は結果として得られる値であり考慮しない.
- 温度変化量は覆工内のみで均一量として考慮する.すなわちコンクリート・鉄筋で均一な温度変化を考慮し、岩盤での温度変化量は考慮しない.

3.1 岩盤

岩盤は完全弾性体とし、岩盤内での温度分布は考慮しないため,

$$\begin{cases} u_g = C_{g1} \cdot r + \frac{C_{g2}}{r} \\ \sigma_{rg} = \frac{E_g}{(1 + \nu_g)(1 - 2\nu_g)} \cdot C_{g1} - \frac{E_g}{(1 + \nu_g)} \frac{C_{g2}}{r^2} \\ \sigma_{\theta g} = \frac{E_g}{(1 + \nu_g)(1 - 2\nu_g)} \cdot C_{g1} + \frac{E_g}{(1 + \nu_g)} \frac{C_{g2}}{r^2} \end{cases}$$
(17)

3.2 鉄筋

鉄筋では均一温度変化を考慮するため

$$\begin{pmatrix}
\frac{1+\nu_{s}}{1-\nu_{s}} \cdot \alpha_{s} \frac{1}{r} \int_{a}^{r} Tr dr = \frac{1+\nu_{s}}{1-\nu_{s}} \cdot \alpha_{s} T \frac{r^{2}-a^{2}}{2r} \\
\frac{\alpha_{s}E_{s}}{1-\nu_{s}} \cdot \frac{1}{r^{2}} \int_{a}^{r} Tr dr = -\frac{E_{s}\alpha_{s}T}{1-\nu} \cdot \frac{r^{2}-a^{2}}{2r^{2}} \\
\frac{\alpha_{s}E_{s}}{1-\nu_{s}} \cdot \frac{1}{r^{2}} \int_{a}^{r} Tr dr - \frac{\alpha_{s}E_{s}T}{1-\nu} = -\frac{E_{s}\alpha_{s}T}{1-\nu} \cdot \frac{r^{2}+a^{2}}{2r^{2}}$$
(18)

よって

$$\begin{cases} u_s = \frac{1+\nu_s}{1-\nu_s} \cdot \alpha_s T \frac{r^2 - a^2}{2r} + C_{s1} \cdot r + \frac{C_{s2}}{r} \\ \sigma_{rs} = -\frac{E_s \alpha_s T}{1-\nu} \cdot \frac{r^2 - a^2}{2r^2} + \frac{E_s}{(1+\nu_s)(1-2\nu_s)} \cdot C_{s1} - \frac{E_s}{(1+\nu_s)} \frac{C_{s2}}{r^2} \\ \sigma_{\theta s} = -\frac{E_s \alpha_s T}{1-\nu} \cdot \frac{r^2 + a^2}{2r^2} + \frac{E_s}{(1+\nu_s)(1-2\nu_s)} \cdot C_{s1} + \frac{E_s}{(1+\nu_s)} \frac{C_{s2}}{r^2} \end{cases}$$
(19)

3.3 内圧を受けるコンクリート (周方向 no-tension 材料)

内圧を受ける場合の周方向 no-tension 材料としてのコンクリートをモデル化する. コンクリートでは均一 温度変化を考慮するため,

$$\alpha_c \int_a^r T dr = \alpha_c T(r-a) \tag{20}$$

よって

$$\begin{cases} u_{c} = C_{c1} + C_{c2} \ln(r) + \alpha_{c} T(r-a) \\ \sigma_{rc} = E_{c} \frac{C_{c2}}{r} \\ \sigma_{\theta c} = 0 \end{cases}$$
(21)

3.4 外圧を受けるコンクリート (完全弾性体)

外圧を受ける場合の完全弾性体としてのコンクリートをモデル化する.温度項は鉄筋と同様の考え方に よる.

$$\begin{cases} u_{c} = \frac{1+\nu_{c}}{1-\nu_{c}} \cdot \alpha_{c} T \frac{r^{2}-a^{2}}{2r} + C_{c1} \cdot r + \frac{C_{c2}}{r} \\ \sigma_{rc} = -\frac{E_{c}\alpha_{c}T}{1-\nu} \cdot \frac{r^{2}-a^{2}}{2r^{2}} + \frac{E_{c}}{(1+\nu_{c})(1-2\nu_{c})} \cdot C_{c1} - \frac{E_{c}}{(1+\nu_{c})} \frac{C_{c2}}{r^{2}} \\ \sigma_{\theta s} = -\frac{E_{c}\alpha_{c}T}{1-\nu} \cdot \frac{r^{2}+a^{2}}{2r^{2}} + \frac{E_{c}}{(1+\nu_{c})(1-2\nu_{c})} \cdot C_{c1} + \frac{E_{c}}{(1+\nu_{c})} \frac{C_{c2}}{r^{2}} \end{cases}$$
(22)

4. 連立方程式の作成

モデルの境界および各材料の接合部において、半径方向変位および半径方向応力の連続性より連立一次方程 式を作成する.これを解くことにより、未定係数を確定でき、モデル各部の変位及び応力を算定することがで きる.

内圧作用モデル

考慮する荷重は、内圧 P₀(外向き正) および覆工内の均一温度変化量 (温度上昇を正) としている.また、コンクリートは周方向 no-tension 材料としている.

外圧作用モデル

考慮する荷重は, 覆工背面に作用する外圧 *P*_e(内向き正) および覆工内の均一温度変化量 (温度上昇を 正) としている. 覆工背面に外圧が作用する場合, 覆工内は全圧縮となるため, コンクリートは完全弾 性体としている. なお, 荷重として比較的小さい外圧と大きな温度低下を入力した場合, コンクリート に引張応力が発生する場合がある. この場合は, 発生引張応力がコンクリートの引張強度を越えるか否 かで扱いを判断する必要がある.

図1 解析モデル概要

	Concrete: No-tinsion body	Concrete: Linear elastic body
Model		Pe
	Bed rock is included.	Bed rock is not included.
Loads	Internal pressure P_0	External pressure P_e
	Temperature change	Temperature change
Re-bar	Double or Single	Double or Single
n *)	Double: 12th, Single: 8th	Double: 10th, Single: 6th

*) n is the dimension of linear equations.

図2 内圧作用モデルと外圧作用モデルの比較

4.1 内圧を受ける単鉄筋断面

行	半径座標		方程式作成	条件		係数	意味	
1	r = R	岩盤モデル外	縁での変位を0に規	規定		C_{g1}	岩盤の未定係数 C ₁	
2	$r = r_b$	岩盤と覆工コ	ンクリートの境界の	の応力の連続	生	C_{g2}	岩盤の未定係数 C2	
3	$r = r_b$	岩盤と覆工コ	ンクリートの境界の	の変位の連続	生	C_{co1}	コンクリートの未定係数 C1	
4	$r = r_2$	覆エコンクリ	ートと鉄筋外面境界	界の応力の連絡	売性	C_{co2}	コンクリートの未定係数 C ₂	
5	$r = r_2$	覆エコンクリ	ートと鉄筋外面境界	界の変位の連絡	売性	C_{s1}	鉄筋の未定係数 C ₁	
6	$r = r_1$	覆エコンクリ	ートの鉄筋内面境界	界の応力の連絡	売性	C_{s2}	鉄筋の未定係数 C2	
7	$r = r_1$	覆エコンクリ	ートの鉄筋内面境界	界の変位の連絡	売性	C_{ci1}	かぶりコンクリートの未定係数 C1	
8	$r = r_a$	覆エコンクリ	ート内壁面応力が内	内水圧 P0 に等	亭しいと規定	C_{ci2}	かぶりコンクリートの未定係数 C2	
	$\begin{bmatrix} a_{1,1} \\ a_{2,1} \\ a_{3,1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccc} 0 & 0 \\ a_{2,4} & 0 \\ a_{3,4} & 0 \\ a_{4,4} & a_{4,5} & a \\ a_{5,4} & a_{5,5} & a \\ 0 & a_{6,5} & a \\ 0 & a_{7,5} & a \\ 0 & 0 \end{array}$	$\begin{array}{ccccccc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 44,6 & 0 \\ 45,6 & 0 \\ 66,6 & a_{6,7} \\ 47,6 & a_{7,7} \\ 0 & a_{8,7} \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ a_{6,8} \\ a_{7,8} \\ a_{8,8} \end{bmatrix} \begin{bmatrix} C_{4} \\ C_{5} \\ C_{6} \\ C_{7} \\ C_{6} \\ C_{6} \end{bmatrix}$	$\left. \begin{array}{c} g_{1} \\ g_{2} \\ \\ g_{2$	$ \begin{pmatrix} 0 \\ 0 \\ -\frac{E_s \alpha_s T}{1 - \nu_s} \cdot \frac{r_2^2 - r_1^2}{2 \cdot r_2^2} \\ \frac{1 + \nu_s}{1 - \nu_s} \alpha_s T \cdot \frac{r_2^2 - r_1^2}{2 \cdot r_2} \\ 0 \\ \alpha_c T(r_1 - r_a) \\ -P_0 \end{pmatrix} $ (2)	3)
$a_{1,2}$	$_1 = R$	F	$a_{1,2} = \frac{1}{R}$	1			F	
$a_{2,2}$	$_{1}=\frac{1}{\left(1+\nu_{g}\right) }$	$\frac{E_g}{2(1-2\nu_g)}$	$a_{2,2} = -\frac{E_g}{1+\iota}$	$\frac{1}{\nu_g} \cdot \frac{1}{r_b^2}$	$a_{2,3} = 0$		$a_{2,4} = \frac{L_c}{r_b}$	
$a_{3,2}$	$1 = r_b$		$a_{3,2} = \frac{1}{r_b}$		$a_{3,3} = -1$		$a_{3,4} = -\ln(r_b)$	
$a_{4,3}$	$_{3} = 0$		$a_{4,4} = \frac{E_c}{r_2}$		$a_{4,5} = -\frac{1}{(1)}$	$\frac{E_s}{(1+\nu_s)(1+\nu_s)}$	$\frac{1}{1 - 2\nu_s} \qquad a_{4,6} = \frac{E_s}{1 + \nu_s} \cdot \frac{1}{r_2^2}$	
$a_{5,3}$	$_{3} = 1$		$a_{5,4} = \ln(r_2)$		$a_{5,5} = -r_2$		$a_{5,6} = -\frac{1}{r_2}$	
$a_{6,2}$	$_{5} = \frac{1}{(1 + \nu_{s})}$	$\frac{E_s}{\left(1-2\nu_s\right)}$	$a_{6,6} = -\frac{E_s}{1+\iota}$	$\frac{1}{\nu_s} \cdot \frac{1}{r_1^2}$	$a_{6,7} = 0$		$a_{6,8} = -\frac{E_c}{r_1}$	
$a_{7,3}$	$_{5} = r_{1}$		$a_{7,6} = \frac{1}{r_1}$		$a_{7,7} = -1$		$a_{7,8} = -\ln(r_1)$	
$a_{8,7}$	7 = 0		$a_{8,8} = \frac{E_c}{r_a}$					

4.2 内圧を受ける複鉄筋断面

行	半径座標			チ	7程式作	戎条件			係数		怠味	
1	r = R	岩盤モ	デル外総	豪での変	位を00	こ規定			C_{g1}	岩盤の未定係数	数 C_1	
2	$r = r_b$	岩盤と	岩盤と覆工コンクリートの境界の応力の連続性						C_{g2}	岩盤の未定係数	数 C_2	
3	$r = r_b$	岩盤と	覆エコン	- クリー	トの境界	の変位	の連続性		C_{co1}	外側かぶりコン	ンクリートの未定係	数 C_1
4	$r = r_4$	覆工コ	ンクリー	ートと外	側鉄筋タ	ト 面境界	の応力の違	車続性	C_{co2}	外側かぶりコン	ンクリートの未定係	数 C_2
5	$r = r_4$	覆エコ	ンクリー	ートと外	側鉄筋タ	ト 面境界	の変位の違	車続性	C _{so1}	外側鉄筋の未知	主係数 C_1	
6	$r = r_3$	覆工コ	ンクリー	ートと外	側鉄筋内	可面境界	しの応力の違	車続性	C_{so2}	外側鉄筋の未知	主係数 C_2	
7	$r = r_3$	覆エコ	覆エコンクリートと外側鉄筋内面境界の変位の連続性							鉄筋間コンク	リートの未定係数 С	'1
8	$r = r_2$	覆エコ	覆エコンクリートと内側鉄筋外面境界の応力の連続性							鉄筋間コンク	リートの未定係数 С	2
9	$r = r_2$	覆エコ	ンクリー	ートと内	側鉄筋タ	ト 面境界	の変位の違	車続性	C_{si1}	内側鉄筋の未知	主係数 C_1	
10	$r = r_1$	覆エコ	ンクリー	ートと内	側鉄筋内	可面境界	の応力の違	車続性	C_{si2}	内側鉄筋の未知	主係数 C_2	
11	$r = r_1$	覆エコ	ンクリー	-トと内	側鉄筋内	可面境界	の変位の違	車続性	C_{ci}	内側かぶりコン	ンクリートの未定係	数 C_1
12	$r = r_a$	覆エコ	ンクリー	- ト内壁	面応力が	「内水圧	EP_0 に等し	、いと規定	C_{ci}	内側かぶりコン	ンクリートの未定係	数 C_2
	$egin{array}{ccccccc} a_{1,1} & a_{1,2} \ a_{2,1} & a_{2,2} \ a_{3,1} & a_{3,2} \ 0 & 0 \ 0 \$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{c} 0 \\ a_{2,4} \\ a_{3,4} \\ a_{4,4} \\ a_{5,4} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$egin{array}{c} 0 \\ 0 \\ a_{4,5} \\ a_{5,5} \\ a_{6,5} \\ a_{7,5} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ a_{4,6} \\ a_{5,6} \\ a_{6,6} \\ a_{7,6} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	· ·	$\begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ a_{10,11} \\ a_{11,11} \\ a_{12,11} \end{matrix}$	$\begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ a_{10,12} \\ a_{11,12} \\ a_{12,12} \end{matrix}$	$\begin{cases} C_{g1} \\ C_{g2} \\ C_{co1} \\ C_{co2} \\ C_{so1} \\ C_{so2} \\ C_{cm1} \\ C_{cm2} \\ C_{si1} \\ C_{si2} \\ C_{ci1} \\ C_{ci2} \end{cases}$	$\mathbf{r} = \begin{cases} \alpha_c T \\ -\frac{E_s \alpha}{1-\tau} \\ \frac{1+\nu_s}{1-\nu_s} \alpha \\ \alpha_c T \\ -\frac{E_s \alpha}{1-\tau} \\ \alpha_c T \\ \alpha_c T \end{cases}$	$ \begin{bmatrix} 0 \\ 0 \\ \frac{sT}{(r_b - r_4)} \\ \frac{sT}{2 \cdot r_4^2} \\ \frac{sT}{2 \cdot r_4^2} \\ \frac{sT}{2 \cdot r_4^2} \\ \frac{sT}{2 \cdot r_4} \\ 0 \\ \frac{sT}{(r_3 - r_2)} \\ \frac{sT}{2 \cdot r_2^2} \\ 0 \\ \frac{sT}{(r_1 - r_a)} \\ -P_0 \end{bmatrix} $	(24)

....

$$\begin{array}{ll} a_{1,1}=R & a_{1,2}=\frac{1}{R} \\ a_{2,1}=\frac{E_g}{(1+\nu_g)(1-2\nu_g)} & a_{2,2}=-\frac{E_g}{1+\nu_g}\cdot\frac{1}{r_b^2} & a_{2,3}=0 & a_{2,4}=\frac{E_c}{r_b} \\ a_{3,1}=r_b & a_{3,2}=\frac{1}{r_b} & a_{3,3}=-1 & a_{3,4}=-\ln(r_b) \\ a_{4,3}=0 & a_{4,4}=\frac{E_c}{r_4} & a_{4,5}=-\frac{E_s}{(1+\nu_s)(1-2\nu_s)} & a_{4,6}=\frac{E_s}{1+\nu_s}\cdot\frac{1}{r_4^2} \\ a_{5,3}=1 & a_{5,4}=\ln(r_4) & a_{5,5}=-r_4 & a_{5,6}=-\frac{1}{r_4} \\ a_{6,5}=\frac{E_s}{(1+\nu_s)(1-2\nu_s)} & a_{6,6}=-\frac{E_s}{1+\nu_s}\cdot\frac{1}{r_3^2} & a_{6,7}=0 & a_{6,8}=-\frac{E_c}{r_3} \\ a_{7,5}=r_3 & a_{7,6}=\frac{1}{r_3} & a_{7,7}=-1 & a_{7,8}=-\ln(r_3) \\ a_{8,7}=0 & a_{8,8}=\frac{E_c}{r_2} & a_{8,9}=-\frac{E_s}{(1+\nu_s)(1-2\nu_s)} & a_{8,10}=\frac{E_s}{1+\nu_s}\cdot\frac{1}{r_2^2} \\ a_{9,7}=1 & a_{9,8}=\ln(r_2) & a_{9,9}=-r_2 & a_{9,10}=-\frac{1}{r_2} \\ a_{10,9}=\frac{E_s}{(1+\nu_s)(1-2\nu_s)} & a_{10,10}=-\frac{E_s}{1+\nu_s}\cdot\frac{1}{r_1^2} & a_{10,11}=0 & a_{10,12}=-\frac{E_c}{r_1} \\ a_{11,9}=r_1 & a_{11,10}=\frac{1}{r_1} & a_{11,11}=-1 & a_{11,12}=-\ln(r_1) \\ a_{12,11}=0 & a_{12,12}=\frac{E_c}{r_a} \end{array}$$

4.3 外圧を受ける単鉄筋断面

行	半径座標				方程式作	□成条件			係数		意味		-
1	$r = r_b$	覆工	コンクリ	レート背	面応力が	5外水圧	P_e に等	しいと規定	C _{co1}	コンクリー	トの未定係	系数 C1	-
2	$r = r_2$	覆工	コンクリ	リートと	鉄筋外面	ī境界の	応力の通	厚続性	C_{co2}	コンクリー	トの未定係	系数 C_2	
3	$r = r_2$	覆工	コンクリ	リートと	鉄筋外面	ī境界の	変位の通	ē続性	C_{s1}	鉄筋の未定値	系数 C_1		
4	$r = r_1$	覆工	コンクリ	リートの	鉄筋内面	ī境界の	応力の通	厚続性	C_{s2}	鉄筋の未定値	系数 C_2		
5	$r = r_1$	覆工	コンクリ	リートの	鉄筋内面	ī境界の	変位の通	ē続性	C_{ci1}	かぶりコン	クリートの	D未定係数 C_1	
6	$r = r_a$	覆工	コンクリ	リート内	壁面応力	」を0に	規定		C_{ci2}	かぶりコンク	クリートの	D未定係数 C_2	
		$\begin{bmatrix} a_{1,1} \\ a_{2,1} \\ a_{3,1} \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$a_{1,2} \\ a_{2,2} \\ a_{3,2} \\ 0 \\ 0 \\ 0 \\ 0$	$0\\ a_{2,3}\\ a_{3,3}\\ a_{4,3}\\ a_{5,3}\\ 0$	$0\\a_{2,4}\\a_{3,4}\\a_{4,4}\\a_{5,4}\\0$	$0\\0\\a_{4,5}\\a_{5,5}\\a_{6,5}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ a_{4,6} \\ a_{5,6} \\ a_{6,6} \end{array}$	$ \begin{pmatrix} C_{co1} \\ C_{co2} \\ C_{s1} \\ C_{s2} \\ C_{ci1} \\ C_{ci2} \end{pmatrix} $	$= \begin{cases} -\frac{1}{1-1} \\ \frac{1+1}{1-1} \\ \frac{1+1}{1-1} \end{cases}$	$\begin{array}{c} -P_e \\ \frac{E_s \alpha_s T}{1 - \nu_s} \cdot \frac{r_2^2}{2 \cdot \cdot} \\ \frac{E_c \alpha_c T}{\nu_s} \cdot \frac{r_2^2}{2} \\ \frac{E_c \alpha_c T}{1 - \nu_c} \cdot \frac{r_1^2}{2 \cdot \cdot} \\ \frac{V_c}{\nu_c} \alpha_c T \cdot \frac{r_1^2}{2} \\ 0 \end{array}$	$\left. \begin{array}{c} -r_1^2 \\ r_2^2 \\ -r_1^2 \\ r_2^2 \\ r_2^2 \\ r_1^2 \\ -r_a^2 \\ -r_a^2 \\ r_1 \end{array} \right\}$		(25)
$a_{1,1}$	$=\frac{1}{(1+\nu_c)}$	$\frac{E_c}{(1-2)}$	$\nu_c)$	$a_{1,2}$	$= -\frac{1}{1}$	$\frac{E_c}{+\nu_c} \cdot \frac{1}{\nu_c}$	$\frac{1}{b^2}$						
$a_{2,1}$	$=\frac{1}{(1+\nu_c)}$	$\frac{E_c}{(1-2)}$	$\nu_c)$	$a_{2,2}$	$= -\frac{1}{1}$	$\frac{E_c}{+\nu_c} \cdot \frac{1}{\nu_c}$	$\frac{1}{2^{2}}$	$a_{2,3} = -\frac{1}{(2)}$	$\frac{E}{(1+\nu_s)($	$\frac{s}{1-2\nu_s)}$	$a_{2,4} =$	$= \frac{E_s}{1+\nu_s} \cdot \frac{1}{r_2^2}$	
$a_{3,1}$	$= r_2$			<i>a</i> 3 9	= 1			$a_{3,3} = -r$	0		$a_{34} =$		

$$\begin{aligned} a_{3,1} &= r_2 & a_{3,2} = \frac{1}{r_2} & a_{3,3} = -r_2 & a_{3,4} = -\frac{1}{r_2} \\ a_{4,3} &= \frac{E_s}{(1+\nu_s)(1-2\nu_s)} & a_{4,4} = -\frac{E_s}{1+\nu_s} \cdot \frac{1}{r_1^2} & a_{4,5} = -\frac{E_c}{(1+\nu_c)(1-2\nu_c)} & a_{4,6} = \frac{E_c}{1+\nu_c} \cdot \frac{1}{r_1^2} \\ a_{5,3} &= r_1 & a_{5,4} = \frac{1}{r_1} & a_{5,5} = -r_1 & a_{5,6} = -\frac{1}{r_1} \\ a_{6,5} &= \frac{E_c}{(1+\nu_c)(1-2\nu_c)} & a_{6,6} = -\frac{E_c}{1+\nu_c} \cdot \frac{1}{r_a^2} \end{aligned}$$

4.4 外圧を受ける複鉄筋断面

1 1.1.1./	王(示			力住	式作成多	禾件			16级		
r =	r_b	覆エコン	クリー	ト背面応	力が外に	水圧 Pe に	こ等しいと	規定	C_{co1}	外側かぶりコンクリートの)未定係数 C1
r =	r_4	覆エコン	クリー	トと外側	鉄筋外i	面境界の『	む力の連続	胞生	C_{co2}	外側かぶりコンクリートの	$D未定係数 C_2$
r =	r_4	覆エコン	クリー	トと外側	鉄筋外	面境界の	変位の連続	触	C _{so1}	外側鉄筋の未定係数 C1	
r =	r_3	覆エコン	クリー	トと外側	鉄筋内i	面境界の『	む力の連続	胞生	C_{so2}	外側鉄筋の未定係数 C ₂	
r =	r_3	覆エコン	クリー	トと外側	鉄筋内i	面境界の	変位の連続	胞生	C_{cm1}	鉄筋間コンクリートの未定	E係数 C_1
r =	r_2	覆エコン	クリー	トと内側	鉄筋外i	面境界の『	芯力の連続	胞性	C_{cm2}	鉄筋間コンクリートの未定	E係数 C_2
r =	r_2	覆エコン	クリー	トと内側	鉄筋外i	面境界の寥	変位の連続	胜	C_{si1}	内側鉄筋の未定係数 C ₁	
r =	r_1	覆エコン	クリー	トと内側	鉄筋内i	面境界の『	芯力の連続	胞性	C_{si2}	内側鉄筋の未定係数 C ₂	
r =	r_1	覆エコン	クリー	トと内側	鉄筋内i	面境界の	変位の連続	胞性	C_{ci}	内側かぶりコンクリートの	D未定係数 C_1
r = r	r_a	覆エコン	クリー	ト内壁面	応力を	0 に規定			C_{ci}	内側かぶりコンクリートの	D未定係数 C_2
$a_{1,1} = \frac{1}{10000000000000000000000000000000000$	$\begin{bmatrix} a_{1,} \\ a_{2,} \\ a_{3,} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 0 \\ a_{2,3} \\ a_{3,3} \\ a_{4,3} \\ a_{5,3} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 0 \\ a_{2,4} \\ a_{3,4} \\ a_{4,4} \\ a_{5,4} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ a_{1,2} = \end{array}$	$ \begin{array}{c} \dots \\ \dots \\ \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ a_{8,9} \\ a_{9,9} \\ a_{10,9} \end{array} $	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ a_{8,10} \\ a_{9,10} \\ a_{10,10} \end{array}$		$ \left. \left. \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 2 \\ 2 \\ 3 \\ 2 \\ 2$	$= \begin{pmatrix} -P_e \\ -\frac{E_s \alpha_s T}{1 - \nu_s} \cdot \frac{r_4^2 - r_3^2}{2 \cdot r_4^2} \\ \frac{1 + \nu_s}{1 - \nu_s} \alpha_s T \cdot \frac{r_4^2 - r_2^2}{2 \cdot r_4^2} \\ -\frac{E_c \alpha_c T}{1 - \nu_c} \cdot \frac{r_3^2 - r_2^2}{2 \cdot r_3^2} \\ \frac{1 + \nu_c}{1 - \nu_c} \alpha_c T \cdot \frac{r_3^2 - r_2^2}{2 \cdot r_2^2} \\ \frac{1 + \nu_s}{1 - \nu_s} \alpha_s T \cdot \frac{r_2^2 - r_1^2}{2 \cdot r_2^2} \\ \frac{1 + \nu_s}{1 - \nu_c} \alpha_c T \cdot \frac{r_1^2 - r_2^2}{2 \cdot r_1^2} \\ \frac{1 + \nu_c}{1 - \nu_c} \alpha_c T \cdot \frac{r_1^2 - r_a^2}{2 \cdot r_1} \\ \end{pmatrix}$	(26)
		E_c			E	c 1				E_s	E_s 1
	$a_{1,1} = \frac{1}{(1)}$	$ \begin{aligned} r &= r_b \\ r &= r_4 \\ r &= r_4 \\ r &= r_4 \\ r &= r_3 \\ r &= r_2 \\ r &= r_2 \\ r &= r_1 \\ r &= r_1$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} r = r_b \\ r = r_4 \\ \overline{\mathbf{g}} \Box = \mathcal{V} \mathcal{I} \mathcal{I} \mathcal{I} \\ r = r_4 \\ \overline{\mathbf{g}} \Box = \mathcal{V} \mathcal{I} \mathcal{I} \\ \overline{\mathbf{g}} \Box = \mathcal{I} \mathcal{I} \\ r = r_3 \\ \overline{\mathbf{g}} \Box = \mathcal{I} \\ r = r_1 \\ \overline{\mathbf{g}} \Box = \mathcal{I} \\ \overline$	r = r_b 覆エコンクリート背面応 マ = r_4 覆エコンクリートと外側 r = r_4 覆エコンクリートと外側 r = r_3 覆エコンクリートと外側 r = r_3 覆エコンクリートと外側 r = r_2 覆エコンクリートと外側 r = r_2 覆エコンクリートと内側 r = r_1 覆エコンクリートと内側 r = r_1 覆エコンクリートと内側 r = r_1 覆エコンクリートと内側 r = r_a 覆エコンクリートと内側 0 r = r_a 履エコンクリートと内側 ア = r_a 電コンクリートと内側 0 r = r_a 電エコンクリートと内側 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} r = r_b \\ r = r_4 \\ \overline{q} \\ \overline{r} = r_7 \\ \overline{q} \\ \overline{q} \\ \overline{r} = r_3 \\ \overline{q} \\ \overline{r} = r_3 \\ \overline{q} \\ \overline{r} = r_2 \\ \overline{q} \\ \overline{q} \\ \overline{r} = r_1 \\ \overline{q} \\ \overline{q} \\ \overline{r} = \nu \\ \overline{r} \\ \overline{q} \\ \overline{q} \\ \overline{r} = \nu \\ \overline{r} \\ \overline{q} \\ \overline{q} \\ \overline{r} = \nu \\ \overline{q} \\ \overline{q} \\ \overline{q} \\ \overline{r} = \nu \\ \overline{q} \\ \overline{q} \\ \overline{q} \\ \overline{q} \\ \overline{r} = \nu \\ \overline{q} \\ q$	$ \begin{array}{c} r = r_b \\ r = r_4 \\ \overline{q} = r_4 \\ \overline{q} = r_4 \\ \overline{q} = r_2 \\ \overline{q} = r_3 \\ \overline{q} = r_3 \\ \overline{q} = r_2 \\ q$	$ \begin{array}{c} r = r_b \\ r = r_4 \\ \overline{q} T = r_2 \\ \overline{q} T = r_3 \\ \overline{q} T = r_3 \\ \overline{q} T = r_3 \\ \overline{q} T = r_2 \\ \overline{q} T =$	$ \begin{array}{c} r = r_b \\ r = r_4 \\ \overline{q} = r_4 \\ \overline{q} = r_4 \\ \overline{q} = r_2 / y - b + b + b + \overline{q} + b + \overline{q} +$	$ \begin{array}{c cccc} r = r_{b} & \overline{q} \overline{z} \exists \forall j \forall \neg \flat \forall \forall \forall \forall \forall \forall \forall \forall \forall$	$ \begin{aligned} r &= r_{b} & \frac{\pi}{2} \square 2 \wedge 9 \ y - b \ t^{2} \ dm (m + b) \ dm (m$

$a_{2,1} = \frac{E_c}{(1+\nu_c)(1-2\nu_c)}$	$a_{2,2} = -\frac{E_c}{1+\nu_c} \cdot \frac{1}{r_4{}^2}$	$a_{2,3} = -\frac{E_s}{(1+\nu_s)(1-2\nu_s)}$	$a_{2,4} = \frac{E_s}{1+\nu_s} \cdot \frac{1}{r_4{}^2}$
$a_{3,1} = r_4$	$a_{3,2} = \frac{1}{r_4}$	$a_{3,3} = -r_4$	$a_{3,4} = -rac{1}{r_4}$
$a_{4,3} = \frac{E_s}{(1+\nu_s)(1-2\nu_s)}$	$a_{4,4} = -\frac{E_s}{1+\nu_s} \cdot \frac{1}{r_3{}^2}$	$a_{4,5} = -\frac{E_c}{(1+\nu_c)(1-2\nu_c)}$	$a_{4,6} = \frac{E_c}{1+\nu_c} \cdot \frac{1}{r_3{}^2}$
$a_{5,3} = r_3$	$a_{5,4} = \frac{1}{r_3}$	$a_{5,5} = -r_3$	$a_{5,6} = -rac{1}{r_3}$
$a_{6,5} = \frac{E_c}{(1+\nu_c)(1-2\nu_c)}$	$a_{6,6} = -\frac{E_c}{1+\nu_c} \cdot \frac{1}{{r_2}^2}$	$a_{6,7} = -\frac{E_s}{(1+\nu_s)(1-2\nu_s)}$	$a_{6,8} = \frac{E_s}{1+\nu_s} \cdot \frac{1}{r_2{}^2}$
$a_{7,5} = r_2$	$a_{7,6} = \frac{1}{r_2}$	$a_{7,7} = -r_2$	$a_{7,8} = -\frac{1}{r_2}$
$a_{8,7} = \frac{E_s}{(1+\nu_s)(1-2\nu_s)}$	$a_{8,8} = -\frac{E_s}{1+\nu_s} \cdot \frac{1}{r_1{}^2}$	$a_{8,9} = -\frac{E_c}{(1+\nu_c)(1-2\nu_c)}$	$a_{8,10} = \frac{E_c}{1+\nu_c} \cdot \frac{1}{r_1{}^2}$
$a_{9,7} = r_1$	$a_{9,8} = \frac{1}{r_1}$	$a_{9,9} = -r_1$	$a_{9,10} = -\frac{1}{r_1}$
$a_{10,9} = \frac{E_c}{(1+\nu_c)(1-2\nu_c)}$	$a_{10,10} = -\frac{E_c}{1+\nu_c} \cdot \frac{1}{r_a{}^2}$		

5. 解析事例

5.1 理論解との比較

下図のような内圧あるいは外圧を受ける平面ひずみ厚肉円筒において,理論解と数値解析解の比較を行った.弾性係数・ポアソン比は、コンクリートの物性相当として,それぞれ $E = 25,000 N/mm^2$, $\nu = 0.2$ とした.なお、 σ_r は半径方向応力、 σ_θ は円周方向応力、uは半径方向変位である.

理論解①

$$\begin{cases} u = \frac{a^2}{b^2 - a^2} \left(\frac{(1+\nu)(1-2\nu)}{E} \cdot r + \frac{1+\nu}{E} \cdot \frac{b^2}{r} \right) \cdot P_a \\ - \frac{b^2}{b^2 - a^2} \left(\frac{(1+\nu)(1-2\nu)}{E} \cdot r + \frac{1+\nu}{E} \cdot \frac{a^2}{r} \right) \cdot P_b \\ \sigma_r = \frac{a^2}{b^2 - a^2} \left(1 - \frac{b^2}{r^2} \right) \cdot P_a - \frac{b^2}{b^2 - a^2} \left(1 - \frac{a^2}{r^2} \right) \cdot P_b \\ \sigma_\theta = \frac{a^2}{b^2 - a^2} \left(1 + \frac{b^2}{r^2} \right) \cdot P_a - \frac{b^2}{b^2 - a^2} \left(1 + \frac{a^2}{r^2} \right) \cdot P_b \end{cases}$$

	-								
a	b	P_a	P_b	$\sigma_{r(a)}$	$\sigma_{\theta(a)}$	$\sigma_{r(b)}$	$\sigma_{\theta(b)}$	u_a	u_b
3000	3600	1	0	-1.000	5.545	0.000	4.545	0.668	0.628
4000	4800	1	0	-1.000	5.545	0.000	4.545	0.890	0.838
5000	6000	1	0	-1.000	5.545	0.000	4.545	1.113	1.047
3000	3600	0	1	0.000	-6.545	-1.000	-5.545	-0.754	-0.732
4000	4800	0	1	0.000	-6.545	-1.000	-5.545	-1.005	-0.976
5000	6000	0	1	0.000	-6.545	-1.000	-5.545	-1.257	-1.220
数値解	析解②								
a	b	P_a	P_b	$\sigma_{r(a)}$	$\sigma_{\theta(a)}$	$\sigma_{r(b)}$	$\sigma_{\theta(b)}$	u_a	u_b
3000	3600	1	0	-1.000	5.562	0.000	4.562	0.670	0.630
4000	4800	1	0	-1.000	5.558	0.000	4.558	0.892	0.840
5000	6000	1	0	-1.000	5.555	0.000	4.555	1.115	1.049
3000	3600	0	1	0.000	-6.545	-1.000	-5.545	-0.754	-0.732
4000	4800	0	1	0.000	-6.545	-1.000	-5.545	-1.005	-0.976
5000	6000	0	1	0.000	-6.545	-1.000	-5.545	-1.257	-1.220
比率②	/①								
a	b	P_a	P_b	$\sigma_{r(a)}$	$\sigma_{\theta(a)}$	$\sigma_{r(b)}$	$\sigma_{\theta(b)}$	u_a	u_b
				1.000	1.003		1.004	1.004	1.003
				1.000	1.002		1.003	1.002	1.003
				1.000	1.002		1.002	1.002	1.002
					1.000	1.000	1.000	1.000	1.000
				—	1.000	1.000	1.000	1.000	1.000
					1.000	1.000	1.000	1.000	1.000

内圧を受ける場合

数値解析解において、内圧を受ける場合のコンクリートは No-tension 材料となっているため、かぶりを 1mm として No-tension 材料の厚さを裏表計 2mm とし、鉄筋厚さを厚くするとともに弾性体としてのコン クリートの物性を入力している.このため引張を負担する有効断面が理論値より 2mm 小さくなっており、応 力・変位とも大きく算定されているが、差異は 0.5% 以下である.

(2) 外圧を受ける場合

数値解析解において、外圧を受ける場合は、コンクリートは完全弾性体として扱っているため、鉄筋の物性 をコンクリートに置き換えることにより全断面が弾性体としてのコンクリート物性を有することとなり、小数 点以下3桁の精度で理論解に一致している.

5.2 FEM 解析結果との比較

(1) 解析モデル

下表の解析条件で、多重円筒理論による解析結果とFEMによる解析結果の比較を行った.

断面	複鉄筋断面	単鉄筋断面
水路内半径	4,000 mm	4,000 mm
覆工厚	800 mm	600 mm
岩盤外縁半径	50,000 mm	50,000 mm
鉄筋かぶり	100 mm	100 mm
内側鉄筋	D32@200x2	D25@250
(鉄筋等価板厚)	$3.97 \mathrm{~mm}$	$2.03 \mathrm{~mm}$
外側鉄筋	D32@200x2	
(鉄筋等価板厚)	$3.97 \mathrm{~mm}$	
コンクリート弾性係数	25,000 1	N/mm^2
コンクリートポアソン比	0.2 (No-tens	sion 時は 0)
コンクリート熱膨張係数	$10 \times 10^{-}$	6 $^{\circ}\mathrm{C}^{-1}$
鉄筋弾性係数	200,000	N/mm^2
鉄筋ポアソン比	0.	3
鉄筋熱膨張係数	$10 \times 10^{-}$	6 $^{\circ}\mathrm{C}^{-1}$
岩盤弾性係数	1~100,000	0 N/mm^2
岩盤ポアソン比	0.2	25
岩盤熱膨張係数	(温度変	化なし)
内水圧	1 M	IPa
温度変化量	覆工内均一	· −10 °C

(2) 解析結果

数值解析解①

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} u_b \\ 35.914 \\ 33.646 \\ 20.625 \\ 4.235 \\ 4.55 \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35.914 33.646 20.625 4.235
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33.646 20.625 4.235
100 451.932 394.871 -0.133 0.128 7.924 7.761 1136.818 -0.368 0.356 20.701	20.625 4.235
	4.235
1000 200.003 174.651 -0.523 0.505 3.222 3.056 258.703 -0.755 0.730 4.316	
10000 59.570 51.894 -0.741 0.714 0.601 0.433 57.164 -0.844 0.816 0.555	0.473
100000 38.825 33.759 -0.773 0.745 0.213 0.045 34.369 -0.854 0.826 0.130	0.048
FEM 解析解②	
Double reinforcement section Single reinforcement section	
E_g σ_{sa} σ_{sb} σ_{rg} $\sigma_{\theta g}$ u_a u_b σ_{sa} σ_{rg} $\sigma_{\theta g}$ u_a	u_b
1 536.491 468.795 -0.002 0.002 9.499 9.398 1958.900 -0.006 0.006 36.032	35.961
10 527.304 460.764 -0.015 0.015 9.328 9.226 1836.720 -0.058 0.056 33.753	33.681
100 451.034 394.092 -0.129 0.128 7.905 7.802 1136.380 -0.353 0.345 20.688	20.612
1000 197.480 172.449 -0.504 0.532 3.174 3.067 258.149 -0.722 0.743 4.305	4.224
10000 56.466 49.182 -0.697 1.148 0.542 0.434 57.101 -0.789 1.240 0.554	0.472
100000 35.654 30.989 -0.556 5.329 0.154 0.045 34.373 -0.619 5.397 0.130	0.048
比率②/①	
Double reinforcement section Single reinforcement section	
E_g σ_{sa} σ_{sb} σ_{rg} $\sigma_{\theta g}$ u_a u_b σ_{sa} σ_{rg} $\sigma_{\theta g}$ u_a	u_b
1 1.000 1.000 0.775 0.767 0.999 1.006 1.002 1.027 0.997 1.001	1.001
10 0.999 1.000 0.950 1.005 0.999 1.006 1.001 0.962 0.967 1.001	1.001
100 0.998 0.998 0.967 1.001 0.998 1.005 1.000 0.960 0.969 0.999	0.999
1000 0.987 0.987 0.964 1.053 0.985 1.004 0.998 0.957 1.018 0.997	0.997
10000 0.948 0.948 0.941 1.608 0.902 1.002 0.999 0.935 1.520 0.998	0.998
<u>100000</u> 0.918 0.918 0.719 7.153 0.723 1.009 1.000 0.725 6.534 1.000	0.996

(3) 考察

岩盤弾性係数が大きくなると, FEM による鉄筋応力が小さく算定される傾向にあるが, 発生応力の絶対値 が小さい範囲でのものであり, 実用上の問題は小さいと考えられる.

岩盤弾性係数が大きい場合に、岩盤での発生応力の差異が大きくなる.これは、多重円筒理論の場合、岩盤 に発生する温度変化の影響はコンクリートの温度変化による変形のみであるが、FEM の場合、コンクリート と岩盤の境界節点に温度変化量が入力されているため、岩盤側要素の応力に温度変化による項が加わることに よるためと考えられる.

理論的には、多重円筒理論による解が厳密解に相当するものであるので、FEM の鉄筋応力計算精度は、現 実的な岩盤弾性係数の範囲である 100~10000N/mm² でみると、概ね 5% 程度の誤差と考えることができる. ただし、多重円筒理論では、覆工-岩盤内の温度分布の影響を精度よく加味することが難しい (可能であるが数 値計算上入力値設定が複雑になる) ため、温度分布を考慮した予測を行うためには FEM のほうが現実的であ ると思われる.

(4) 適用限界水圧の比較

適用限界内水圧は、応力解析結果を用い、以下の式で算定する. 符号は引張を正とする.

$$P_{cr} = \frac{f - \sigma_T}{\sigma(p)} \cdot p \tag{27}$$

 P_{cr} :適用限界内水圧 f:材料発生応力の限界値

 σ_T : 温度応力 $\sigma(p)$: 内水圧 p のときの発生応力

p : 発生応力を算定したときの内水圧 (ここでは 1MPa)

表1 材料発生応力の限界値 f

検討断面	項目	限界値	限界值算定根拠
複鉄筋断面 (D32@200x2)	鉄筋引張応力	172 N/mm^2	ひび割れ幅 0.5mm
単鉄筋断面 (D25@250)	鉄筋引張応力	140 N/mm^2	ひび割れ幅 0.5mm

比較ケースは以下のとおり.

1	多重円筒理論による. 温度変化は覆工内均一:-10°C
2	FEM による.温度変化は覆工内均一:−10°C
3	FEM による.温度変化は覆工内壁で –10°C とし、覆工内・岩盤内の温度分布を考慮

	複鉄筋断面 (t=800mm,D32@200x2)					単鉄筋断面 (t=600mm,D25@250x1)				
E_g	適用	限界水圧 (N	MPa)	比較		適用限界水圧 (MPa)			比較	
(MPa)	1	2	3	2/1	2/1	1	2	3	2/1	2/1
1	0.321	0.321	0.314	1.000	0.980	0.071	0.071	0.071	0.999	0.999
2	0.321	0.322	0.315	1.000	0.980	0.072	0.072	0.072	0.998	0.999
5	0.323	0.323	0.317	1.001	0.980	0.073	0.073	0.073	0.999	0.999
10	0.326	0.326	0.319	1.001	0.980	0.075	0.075	0.075	0.999	1.000
20	0.331	0.331	0.325	1.001	0.981	0.079	0.079	0.079	0.999	1.001
50	0.347	0.347	0.341	1.002	0.984	0.092	0.092	0.092	0.999	1.003
100	0.373	0.374	0.368	1.004	0.988	0.113	0.113	0.113	1.000	1.006
200	0.425	0.428	0.423	1.007	0.995	0.154	0.154	0.156	1.001	1.010
500	0.581	0.588	0.586	1.012	1.008	0.279	0.279	0.283	1.002	1.014
1000	0.841	0.855	0.857	1.017	1.018	0.486	0.488	0.494	1.002	1.016
2000	1.358	1.386	1.396	1.020	1.028	0.900	0.902	0.916	1.003	1.018
5000	2.888	2.956	2.990	1.024	1.035	2.130	2.136	2.170	1.003	1.019
10000	5.368	5.502	5.575	1.025	1.039	4.145	4.157	4.225	1.003	1.019
20000	10.083	10.341	10.489	1.026	1.040	8.051	8.074	8.206	1.003	1.019
50000	22.535	23.116	23.460	1.026	1.041	18.854	18.904	19.215	1.003	1.019
100000	38.963	39.962	40.565	1.026	1.041	34.301	34.381	34.948	1.002	1.019

解析結果より、以下のことがわかる.

○ 岩盤弾性係数 *Eq* が大きくなると FEM による計算結果のほうが大きくなる傾向があること,

- 単鉄筋断面より複鉄筋断面のほうが,多重円筒理論と FEM との差異は大きく,その値は複鉄筋断面で 4% 程度以下,単鉄筋断面で2% 程度以下となっている.
- 解析方法による差異はあるものの、いずれの手法でも 5% 程度以下の範囲で解は一致するため、実用に 資するものと考えられる.

6. 入出力データ

6.1 入力データ

出力用コメント # コメント行 IE,PP,TT,aa,bb,rr,cc,ta,tb,Ec,nc,ac,Es,ns,as,Eg,ng ・・・・・

○ 1 行目は出力用コメント

○ #は入力ファイル中のコメント行.1行目以外の任意の行で使用可能

○ 計算用データは計算1ケース当り1行,カンマ区切りで記載

○ 計算用データの入力数値並びは以下のとおり

IE	内水圧作用時は 0,外水圧作用時は 1					
PP	作用水圧 (内水圧は外向き正,外水圧は内向き正で入力)					
TT	温度変化量 (温度上昇を正,温度低下を負で入力)					
aa	水路内半径					
bb	掘削半径 (覆工外半径)					
\mathbf{rr}	モデル外縁半径					
cc	鉄筋のかぶり (内側鉄筋・外側鉄筋とも同一値とする)					
$_{\mathrm{ta}}$	内側鉄筋等価板厚					
$^{\mathrm{tb}}$	外側鉄筋等価板厚. 単鉄筋断面の場合は任意の負の値を入力					
Ec	コンクリート弾性係数					
\mathbf{nc}	コンクリートポアソン比					
ac	コンクリート熱膨張係数					
Es	鉄筋弾性係数					
ns	鉄筋ポアソン比					
as	鉄筋熱膨張係数					
Eg	岩盤弾性係数					
ng	岩盤ポアソン比					

6.2 出力データ

・・・カンマ区切り数値並び・・・	
$k, IE, Eg, dI, sr_c, st_c, sr_{si}, st_{si}, sr_{so}, st_{so}, sr_g, st_g, ua, ub$	
*Output data	
•••••	
・・・カンマ区切り数値並び・・・	
k, IE, PP, TT, aa, bb, rr, cc, ta, tb, Ec, nc, ac, Es, ns, as, Eg, ng	
*Input data	
出力用コメント	

k	計算実行の通し番号	IE	内圧作用時:0,外圧作用時:1
Eg	水圧値	dT	温度変化量
sr_c	覆工内壁コンクリート半径方向応力	st_c	覆工内壁コンクリート周方向応力
sr_{si}	内側鉄筋半径方向応力	st_{si}	内側鉄筋周方向応力
sr_{so}	外側鉄筋半径方向応力	st_{so}	外側鉄筋周方向応力
sr_g	覆工に接する岩盤の半径方向応力	st_g	覆工に接する岩盤の周方向応力
ua	覆工内壁変位 (外向き正)	ub	覆工外縁変位 (外向き正)