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Calculation method for Hydrologic Statistics

In the case of obtaining the design flood discharge or design probable rainfall, it is necessary
to calculate the hydrologic statistics. In this document, formulas and calculation method of the
hydrologic statistics are introduced. Please note that the theorotical details are not mentioned in
this document.
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1. Basic issues
1.1 PDF and CDF

The relationship between PDF and CDF is shown below:

F (x) =

∫ x

−∞
f(t)dt (1)

where, f(x) : PDF (probability density function)
F (x) : CDF (cumulative distribution function

According to the definition of CDF, we can understand that F (x) : CDF is equal to non-exceedance
probability for x.

1.2 Retuen period

(1) Return period

Return period is defined as follow:

T =
1

µ(1− p)
(2)

where, T : return period or recurrence interval (year)
p : non-exceedance probability for hydrological variable xp

p = F (xp) xp = F−1(p)
xp is often called quantile or T -year event.

µ : annual average number of occurrence of X = xp.

Above is available for treatment of Peaks Over Threshold data (POT).
If we deal with Annual Maximum Series data (AMS), µ = 1 :

T =
1

1− p
p = 1− 1

T
(3)

(2) Reliability and Risk for N years (for AMS)

P (X < xT )N =

(
1− 1

T

)N

Probability of non-exceedance for N years (4)

P (X = xT )N = 1−
(
1− 1

T

)N

Probability of exceedance at least once in N years (5)

(3) Sample calculation (for AMS)

Return period (years) T 5 10 30 100 200 500 1000 5000

Years considered N 5 5 5 10 20 50 100 500

Non-exceedance probability P 0.328 0.590 0.844 0.904 0.905 0.905 0.905 0.905

1.3 Average, Variance, Skewness

x̄ =
1

N

N∑
j=1

xj Sample average (6)

S2 =
1

N

N∑
j=1

(xj − x̄)2 Sample variance (7)

Cs =
1

N

N∑
j=1

(
xj − x̄

S

)3

Sample skewness (8)

σ̂2 =
N

N − 1
S2 Unbiased variance (9)

γ̂ =

√
N(N − 1)

N − 2
Cs Unbiased skewness (10)
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1.4 PWM and L-Moments

Probabolity Weighted Moments (PWM) and L-Momets are adopted in a field of Hydrologic Frequency
Analysis.
Although concept of order of data is not included in conventional use of average, variance and skewness,

order statistics are adopted in use of PWM and L-Moments.
PWM for a population is defined below:

βr =

∫ 1

0

xF rdF (r = 0, 1, 2, . . . ) (11)

and the relationship between PWM and L-Moments for a population is shown below:

λ1 = β0 (12)

λ2 = 2β1 − β0 (13)

λ3 = 6β2 − 6β1 + β0 (14)

PWM for a sample is shown below, and the relationship between PWM and L-Moments is same as
the case for population.

b0 =
1

N

N∑
j=1

x(j) (15)

b1 =
1

N(N − 1)

N∑
j=1

(j − 1)x(j) (16)

b2 =
1

N(N − 1)(N − 2)

N∑
j=1

(j − 1)(j − 2)x(j) (17)

where, x(j) is the jth value in ascending order.

1.5 Plotting position formulas

A general formula for computing plotting position is defined as follow:

F [x(i)] =
i− α

N + 1− 2α
(18)

where N Number of sample
i Rank order in ascending order

x(i) Value of sample with rank order i in ascending order
F [x(i)] Plotting position (like a non-exceedance probability)

α Constant for a paticular plotting position formula (α = 0 ∼ 1)

Formula Weibull Blom Cunnane Gringorten Hazen
α 0 0.375 0.40 0.44 0.5
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1.6 Probability Distribution Function for Hydrologic Frequency Analysis

Some Probability Distribution Functions for Hydrologic Frequency Analysis are enumerated below:

Classification Name of function Number of parameters

Distribution of Generalized Extreme Value distribution 3
Block Maxima Gumbel distribution 2

such as Weibull distribution with 3 parameters 3
Annual Maximum Series SQRT exponential-type distribution of maximum 2

Distribution of Generalized Pareto distribution 3
Peaks Over Threshold Exponential distribution 2

Normal distribution 2
Empirical rule Log-Normal Distribution with 3 parameters 3

Pearson type III distribution 3
Log-Pearson type III distribution 3
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2. Probability Distribution Model
2.1 Normal distribution (N-distribution)

The parameter estimation method in the case of Hydrologic statistic x following Normal distribution is
shown below.

(1) Probability Density Function

f(x) =
1

σx

√
2π

· exp

[
−1

2

(
x− µx

σx

)2
]

(19)

(2) Cumulative Distribution Function

F (x) = Φ

(
x− µx

σx

)
Φ(z) =

1√
2π

∫ z

−∞
exp

(
−1

2
t2
)
dt (20)

(3) Quantile xp for non-exceedance probability p

z =
x− µx

σx
→ x = µx + σxz (21)

xp = µx + σxzp zp: z value at p = Φ(z) (22)

(4) Estimation of parameters using L-Moments

b0 =
1

N

N∑
j=1

x(j) b1 =
1

N(N − 1)

N∑
j=1

(j − 1)x(j) (23)

where, x(j)is the jth value in ascending order. x1 means minimum value of xj

The value of λi can be calculated by deeming bi = βi in above.

λ1 = β0 λ2 = 2β1 − β0 (24)

Parameters can be estimated using following relationship.{
µx = λ1

σx =
√
πλ2

(25)
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2.2 Log-Normal Distribution with 3 parameters (LN3-distribution)

The parameter estimation method in the case of Hydrologic statistic x following Log-Normal distribution
with 3 parameters is shown below.

(1) Probability Density Function

f(x) =
1

(x− a)σy

√
2π

· exp

{
−1

2

[
ln(x− a)− µy

σy

]2}
y = ln(x− a) (26)

(2) Cumulative Distribution Function

F (x) = Φ

(
ln(x− a)− µy

σy

)
Φ(z) =

1√
2π

∫ z

−∞
exp

(
−1

2
t2
)
dt (27)

(3) Quantile xp for non-exceedance probability p

z =
ln(x− a)− µy

σy
→ x = a+ exp(µy + σyz) (28)

xp = a+ exp(µy + σyzp) zp: value of z at p = Φ(z) (29)

(4) Estimation of parameters (Iwai method or Quantile method)

a =
x(1) · x(N) − xm

2

x(1) + x(N) − 2xm
x(1) + x(N) − 2xm > 0

µy =
1

N

∑N
j=1 ln(xj − a)

σy
2 =

1

N

∑N
j=1 [ln(xj − a)− µy]

2

(30)

where, x(1) is the minimum value of sample data, x(N) is the maximum value of sample data and xm is
the median of sample data. x(j) is j-th value of x in ascending order.

(5) Estimation of parameters (Moment method)

x̄ =
1

N

N∑
j=1

xj S2
x =

1

N

N∑
j=1

(xj − x̄)2 Csx =
1

N

N∑
j=1

(
xj − x̄

Sx

)3

(31)

µx = x̄ σx = [N/(N − 1)]1/2Sx γx =

√
N(N − 1)

N − 2
Csx (32)

(Reference)
To get the unbiased skewness γx, the following formula for Log-Normal distribution by Bobee and Ro-
bitaille is adopted. Note that Csx to the power of 3 is multiplied by B.

γx = Csx(A+B · Csx
3) (33)

where, A = 1.01 + 7.01/N + 14.66/N2 B = 1.69/N + 74.66/N2 (34)

The relationship between moments and parameters is shown below:

µx = a+ exp(µy) · exp(σ2
y/2) (35)

σx = exp(µy)
√
exp(σ2

y){exp(σ2
y)− 1} (36)

γx = {exp(σ2
y) + 2}

√
exp(σ2

y)− 1 (37)

The parameters which we want to know are σy, µy and a in above equations. The third equation in
above is expressed as follow,

γx = {exp(σ2
y) + 2}

√
exp(σ2

y)− 1 ⇒ x3 + 3x2 − 4− γ2
x = 0 where, x = exp(σ2

y) (38)

The real positive solution for above cubic equation can be obtained by Cardano’s method as follow,

x =
(
β +

√
β2 − 1

)1/3
+
(
β −

√
β2 − 1

)1/3
− 1 where, β = 1 +

γ2
x

2
(39)
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As a result, parameters can be estimated using following equations.
σy =

√
ln(x) : x is a real positive solution of cubic equation x3 + 3x2 − 4− γ2

x = 0

µy = ln

(
σx√

x(x− 1)

)
a = µx − exp(µy) · exp(σ2

y/2)

(6) Estimation of parameters (Trial method using single regression analysis)

Parameters can be obtain using following relationship.

z =
ln(x− a)− µy

σy
⇒ z = A ·X +B (40)

X = ln(x− a) A =
1

σy
B = −µy

σy
(41)

where, z is a %-point of standard normal distribution. It is calculated from the non-exceedance proba-
bility of x. Non-exceedance probability can be obtained using Protting position formula.
From above, following relationships are derived.

a : (selected value by trial single regression analysis)

µy = −
B

A

σy =
1

A

a is determind as a value in case that linear line has the maximum correlation coefficient. The procedure
to obtain the value of a is shown below:

a. Set the initial value of a = x(1) − δ (δ: small value).
b. Repeat single regression analysis by reducing the value of a.
c. Select the value of a when linear line has the maximum correlation coefficient.
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2.3 Pearson type III distribution (P3-distribution)

The parameter estimation method in the case of Hydrologic statistic x following Pearson type III distri-
bution (Gamma distribution) is shown below.

(1) Probability Density Function

f(x) =
1

|a| · Γ(b)

(
x− c

a

)b−1

· exp
(
−x− c

a

)
a > 0 : c 5 x < ∞ (42)

c is a location parameter, a is a scale parameter, b is a shape parameter.

(2) Cumulative Distribution Function

F (x) = G

(
x− c

a

)
G(w) =

1

Γ(b)

∫ w

0

tb−1 exp(−t)dt (a > 0) (43)

(3) Quantile xp for non-exceedance probability p

w =
x− c

a
→ x = c+ aw (44)

xp = c+ awp wp: Value od w at p = G(w) (45)

(4) Estimation of parameters (Moment method)

x̄ =
1

N

N∑
j=1

xj S2
x =

1

N

N∑
j=1

(xj − x̄)2 Csx =
1

N

N∑
j=1

(
xj − x̄

Sx

)3

(46)

µx = x̄ σx = [N/(N − 1)]1/2Sx γx =

√
N(N − 1)

N − 2
Csx (47)

(Reference)
To get the unbiased skewness γx, the following formula for Pearson type III distribution by Bobee and
Robitaille is adopted. Note that Csx to the power of 2 is multiplied by B.

γx = Csx(A+B · Csx
2) (48)

where, A = 1 + 6.51/N + 20.2/N2 B = 1.48/N + 6.77/N2 (49)

The relationship between moments and parameters is shown below:

µx = c+ a · b σx
2 = a2 · b γx =

2a

|a|
√
b

(50)

As a result, parameters can be estimated using following equations.
b = 4/γx

2 (b > 0)

a = σx/
√
b (γx < 0 → a = −σx/

√
b < 0)

c = µx − ab

(51)

Note that if γx is less than 0 (γx < 0), a shall be less than 0 (a < 0) and the value of wp is for the
probability of 1− p.
If the absolute value of γx is small, the same problem as Log-Pearson type III distribution may occur.
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2.4 Log-Pearson type III distribution (LP3-distribution)

The parameter estimation method in the case of Hydrologic statistic x following Log-Pearson type III
distribution is shown below.

(1) Probability Density Function

f(x) =
1

|a| · Γ(b) · x

(
lnx− c

a

)b−1

· exp
(
− lnx− c

a

)
a > 0 : exp(c) < x < ∞ (52)

c is a location parameter, a is a scale parameter, b is a shape parameter.

(2) Cumulative Distribution Function

F (x) = G

(
lnx− c

a

)
G(w) =

1

Γ(b)

∫ w

0

tb−1 exp(−t)dt (a > 0) (53)

(3) Quantile xp for non-exceedance probability p

w =
lnx− c

a
→ x = exp(c+ aw) (54)

xp = exp(c+ awp) wp: the value of w at p = G(w) (55)

(4) Estimation of parameters (Moment method)

yj = lnxj ȳ =
1

N

N∑
j=1

yj S2
y =

1

N

N∑
j=1

(yj − ȳ)2 Csy =
1

N

N∑
j=1

(
yj − ȳ

Sy

)3

(56)

µy = ȳ σy = [N/(N − 1)]1/2Sy γy =

√
N(N − 1)

N − 2
Csy (57)

(Reference)
To get the unbiased skewness γx, the following formula for Pearson type III distribution by Bobee and
Robitaille is adopted. Note that Csy to the power of 2 is multiplied by B.

γy = Csy(A+B · Csy
2) (58)

where, A = 1 + 6.51/N + 20.2/N2 B = 1.48/N + 6.77/N2 (59)

The relationship between moments and parameters is shown below:

µy = c+ a · b σy
2 = a2 · b γy =

2a

|a|
√
b

(60)

As a result, parameters can be estimated using following equations.
b = 4/γy

2 (b > 0)

a = σy/
√
b (γy < 0 → a = −σy/

√
b < 0)

c = µy − ab

(61)

Note that if γy is less than 0 (γy < 0), a shall be less than 0 and the value of wp is for the value of 1− p.
In the case of small absolute value of γy, the value of b becomes huge so that the converged value of

percent point for Gamma distribution can not be obtained. Therefore, if b becomes huge value, quantile
xp for non-exceedance probability p can be calculated using Wilson-Hilferty transformation shown below.

xp = exp(µy + σy ·Kp) Kp =
2

γy

(
1 +

γyzp
6

− γy
2

36

)
− 2

γy
(62)

where, zp is standard normal deviate following N(0, 1). If b is greater than 10,000, it may be better to
use Wilson-Hilferty transformation. Even if skewness γy is less than 0 (γy < 0), standard normal deviate
zp shall be for the probability of p, and it is not necessary to change the value of γy to |γy| (absolute
value). It means just calculated values of p and γy can be used for next calculation.
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2.5 Gumbel distribution

The parameter estimation method in the case of Hydrologic statistic x following Gumbel distribution is
shown below.

(1) Probability Density Function

f(x) =
1

a
exp

[
−x− c

a
− exp

(
−x− c

a

)]
−∞ < x < ∞ (63)

c is a location parameter, a is a scale parameter.

(2) Cumulative Distribution Function

F (x) = exp

[
− exp

(
−x− c

a

)]
(64)

(3) Quantile xp for non-exceedance probability p

p = exp

[
− exp

(
−x− c

a

)]
→ x = c− a ln[− ln(p)] (65)

xp = c− a ln[− ln(p)] (66)

(4) Estimation of parameters (L-moments method)

b0 =
1

N

N∑
j=1

x(j) b1 =
1

N(N − 1)

N∑
j=1

(j − 1)x(j) (67)

where, x(j) is j-th value of sample x in ascending order. It means that x(1) is the minimum value of
sample data and x(N) is the maximum value of sample data.
The values of λi can be calculated using following relationship by deeming bi = βi.

λ1 = β0 λ2 = 2β1 − β0 (68)

Parameters can be estimated using following relationship between L-Moments and parameters.{
a = λ2/ ln 2

c = λ1 − 0.5772a
(69)
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2.6 Generalized Extreme Value distribution (GEV-distribution)

The parameter estimation method in the case of Hydrologic statistic x following Generalized Extreme
Value distribution is shown below. Gumbel distribution is the same as Generalized Extreme value
distribution with k = 0.

(1) Probability Density Function

f(x) =
1

a

(
1− k

x− c

a

)1/k−1

· exp

[
−
(
1− k

x− c

a

)1/k
]

(k 6= 0) (70)

c is a location parameter, a is a scale parameter, k is a shape parameter.

(2) Cumulative Distribution Function

F (x) = exp

[
−
(
1− k

x− c

a

)1/k
]

(k 6= 0) (71)

(3) Quantile xp for non-exceedance probability p

p = exp

[
−
(
1− k

x− c

a

)1/k
]

→ x = c+
a

k
·
{
1− [− ln(p)]k

}
(72)

xp = c+
a

k
·
{
1− [− ln(p)]k

}
(73)

(4) Estimation of parameters (L-moments method)

b0 =
1

N

N∑
j=1

x(j) b1 =
1

N(N − 1)

N∑
j=1

(j−1)x(j) b2 =
1

N(N − 1)(N − 2)

N∑
j=1

(j−1)(j−2)x(j) (74)

where, x(j) is j-th value of sample x in ascending order. It means that x(1) is the minimum value of
sample data and x(N) is the maximum value of sample data.
The values of λi can be calculated using following relationship by deeming bi = βi.

λ1 = β0 λ2 = 2β1 − β0 λ3 = 6β2 − 6β1 + β0 (75)

Parameters can be estimated using following relationship between L-Moments and parameters.

k = 7.8590d+ 2.9554d2 where, d =
2λ2

λ3 + 3λ2
−

ln(2)

ln(3)

a =
kλ2

(1− 2−k) · Γ(1 + k)

c = λ1 −
a

k
· [1− Γ(1 + k)]

(76)
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2.7 SQRT exponential-type distribution of maximum (SQRT-ET distribution)

The parameter estimation method in the case of Hydrologic statistic x following SQRT exponential-type
distribution of maximum is shown below.

(1) Probability Density Function

f(x) =
ab

2
exp

[
−
√
bx− a

(
1 +

√
bx
)
exp

(
−
√
bx
)]

(x = 0) (77)

(2) Cumulative Distribution Function

F (x) = exp
[
−a
(
1 +

√
bx
)
exp

(
−
√
bx
)]

(x = 0) (78)

(3) Quantile xp for non-exceedance probability p

p = exp
[
−a
(
1 +

√
bx
)
exp

(
−
√
bx
)]

= exp [−a(1 + tp) exp(−tp)] (tp =
√
bx) (79)

→ x =
tp

2

b
ln(1 + tp)− tp = ln

[
−1

a
ln(p)

]
(80)

xp =
tp

2

b
ln(1 + tp)− tp = ln

[
−1

a
ln(p)

]
(81)

■(Reference) Calculation method of tp
We define the function g(tp) as follow:

g(tp) = ln(1 + tp)− tp − ln

[
−1

a
ln(p)

]
(82)

Next we can get the differential of g(tp) as follow:

g′(tp) =
1

1 + tp
− 1 (83)

So we can know that function g(tp) is a monotone decreasing function because the value of g′(tp)
is negative for valid tp.
And we can obtain the value of tp at g(tp) = 0 using Newton-Raphson method shown below.

tp(n+1) = tp(n) −
g(tp(n))

g′(tp(n))
(n): counter for iterative calculation (84)

Regarding an initial value of tp, it is convenient to use the value of tp =
√
b · xmax, because we

want to know the value of xp at the heigher range of non-exceedance probability of p.

(4) Estimation of parameters (Maximum Likelihood Method)

Parameters a and b are determined so that a log-likelihood function L shown below has the maximum
value.

L(a, b) =

N∑
j=1

ln f(xj)

= N ln a+N ln b−N ln 2−
N∑
j=1

√
bxj − a

 N∑
j=1

exp
(
−
√
bxj

)
+

N∑
j=1

√
bxj exp

(
−
√
bxj

) (85)

From the condition that partial differential of L by b becomes 0, a can be expressed as a function of
b. We define this temporary value equals to a1.

∂L

∂b
= 0 → a =

∑N
j=1

√
bxj − 2N∑N

j=1(bxj) exp
(
−
√
bxj

) = a1 (86)
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Next, from the condition that partial differential of L by a becomes 0, a can be expressed as a function
of b. We define this temporary value equals to a2.

∂L

∂a
= 0 → a =

N∑N
j=1 exp

(
−
√
bxj

)
+
∑N

j=1

√
bxj exp

(
−
√

bxj

) = a2 (87)

Since L has the maximum value at the condition of a1 = a2, the value of b can be obtained using
bisection method, where the equation for bisection method is h(b) = a1(b)−a2(b) = 0. Note that a2 > 0
is everytime true, but b shall satisfy the following condition for ensureing a1 > 0.

a1 > 0 → b >

(
2N∑N

j=1

√
xj

)2

(88)

Sample program by C language is shown below.

/* Bisection method */

b1=bb; /* Set the value of b1 (condition: a1>0) */

b2=b1+0.5; /* Set the value of b2 as the value of b1+0.5 */

bb=0.5*(b1+b2); /* Set the intermediate value of bb */

f1=FSQR(nd,datax,b1,&a1,&a2); /* Get the value of h(b1) */

f2=FSQR(nd,datax,b2,&a1,&a2); /* Get the value of h(b2) */

ff=FSQR(nd,datax,bb,&a1,&a2); /* Get the value of h(bb) */

do{ /* Loop for iterative calculation */

if(f1*ff<0.0)b2=bb;

if(ff*f2<0.0)b1=bb;

if(ff==0.0)break;

if(0.0<f1*ff&&0.0<ff*f2){b1=b2;b2=b1+0.5;} /* Technique for searching the solution. */

bb=0.5*(b1+b2);

f1=FSQR(nd,datax,b1,&a1,&a2);

f2=FSQR(nd,datax,b2,&a1,&a2);

ff=FSQR(nd,datax,bb,&a1,&a2);

}while(0.001<fabs(a1-a2)); /* Criteria for judgement of convergence: |h(b)|<0.001 */

12



2.8 Weibull distribution with 3 parameters

The parameter estimation method in the case of Hydrologic statistic x following Weibull distribution
with 3 parameters is shown below.

(1) Probability Density Function

f(x) =
k

a

(
x− c

a

)k−1

exp

[
−
(
x− c

a

)k
]

(k 6= 0) (89)

c is a location parameter, a is a scale parameter, k is a shape parameter.

(2) Cumulative Distribution Function

F (x) = 1− exp

[
−
(
x− c

a

)k
]

(k 6= 0) (90)

(3) Quantile xp for non-exceedance probability p

1− p = exp

[
−
(
x− c

a

)k
]

→ x = c+ a[− ln (1− p)]1/k (91)

xp = c+ a[− ln (1− p)]1/k (92)

(4) Estimation of parameters (L-moments method by Goda *)

b0 =
1

N

N∑
j=1

x(j) b1 =
1

N(N − 1)

N∑
j=1

(j−1)x(j) b2 =
1

N(N − 1)(N − 2)

N∑
j=1

(j−1)(j−2)x(j) (93)

where, x(j) is j-th value of sample x in ascending order. It means that x(1) is the minimum value of
sample data and x(N) is the maximum value of sample data.
The values of λi can be calculated using following relationship by deeming bi = βi.

λ1 = β0 λ2 = 2β1 − β0 λ3 = 6β2 − 6β1 + β0 (94)

Parameters can be estimated using following relationship between L-Moments and parameters.
k = 285.3τ6 − 658.6τ5 + 622.8τ4 − 317.2τ3 + 98.52τ2 − 21.256τ + 3.5160 where τ = λ3/λ2

a =
λ2

(1− 2−1/k) · Γ(1 + 1/k)

c = λ1 − a · Γ(1 + 1/k)

(95)

*) https://www.jstage.jst.go.jp/article/kaigan/65/1/65_1_161/_pdf
”Use of L-moments Method for Extreme Statistics of Storm Wave Heights”
(auther: Yoshimi GODA, Masanobu KUDAKA and Hiroyasu KAWAI)
For the item of Weibull distribution in the Table-2 on above paper:

Although k is the function of λ3 in this table, I think τ3 = λ3/λ2 is correct. In addition, although

denominator of A includes k, I think this is miss type.

(5) Estimation of parameters (Maximum Likelihood Method)

Since 3 parameters are included in this problem, following procedure can be adopted.

© First, to estimate location parameter c using plotting position formula. As a result, c becomes
known parameter.

© Second, to estimate shape parameter k and scale parameter a using known parameter of c. As a
calculation method, Maximum Likelihood Method can be used.

(I) Estimation of location parameter c
Non-exceedance probability F (x) of sample x can be estimated using plotting position formula. Note
that sample data shall be sorted order in ascending to use plotting position formula.
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Following equation is obtained by transforming Cumulative Distribution Function.

1− F (x) = exp

[
−
(
x− c

a

)k
]

(96)

From above, following equation can be obtained as a logarithm of 2 times.

ln{− ln[1− F (x)]} = k ln(x− c)− k ln a → Y = A ·X +B (97)

Next, k and a can be obtained using following equations based on single regression analysis.

Yi = ln{− ln[1− F (xi)]} Xi = ln(xi − c) (98)

A =
N
∑

XiYi −
∑

X ·
∑

Yi

N
∑

Xi
2 − (

∑
Xi)2

B =

∑
Xi

2 ·
∑

Yi −
∑

Xi ·
∑

XiYi

N
∑

Xi
2 − (

∑
Xi)2

(99)

r =
N
∑

XiYi −
∑

Xi ·
∑

Yi√
[N
∑

X2
i − (

∑
Xi)2] · [N

∑
Yi

2 − (
∑

Yi)2]
(100)

k = A a = exp(−B/A) (101)

where, N is sample number.
Since c is unknown value in above equations, it is necessary to carry out the trial calculation to get the

optimal value of c which gives maximum value of correlation coefficient r by simple regression analysis.
In this stage, temporary values of k, a and c are obtained. However, it is desirable to carry out

additional calculation in order to get the more certain values.
In next stage, the condition is that c is fixed and k and a are unknown values.

(II) Estimation of shape parameter k and scale parameter a
By setting t = x− c, following equation is obtained, where c is already fixed (known parameter).

f(t) =
k

a

(
t

a

)k−1

exp

[
−
(
t

a

)k
]

(102)

Using log likelihood function for above equation L =
∑N

i=1 ln f(ti), k and a can be estimated by
Newton-Raphson method. As an initial value of k, obtained value in previous step can be used.

∂L

∂k
= 0 → 1

k
+

∑N
i=1 ln ti

N
−
∑N

i=1[(ln ti) · tik]∑N
i=1 ti

k
= 0 (103)

∂L

∂a
= 0 → a =

( ∑N
i=1 ti

k

N

)1/k

(104)

g(k) =
1

k
+

T0

N
− T2(k)

T1(k)
g′(k) = − 1

k2
− T3(k) · T1(k)− [T2(k)]

2

[T1(k)]2
(105)

T0 =
N∑
i=1

ln ti T1(k) =
N∑
i=1

ti
k T2(k) =

N∑
i=1

[ln ti · tik] T3(k) =
N∑
i=1

[ln ti · ln ti · tik] (106)

Iterative calculation using following equation shall be carried out untill getting converged value of k,
where n is a counter for iterative calculation.

kn+1 = kn − g(kn)

g′(kn)
(107)

If the value of k is defined, the value of a also can be defined using below.

a =

( ∑N
i=1 ti

k

N

)1/k

(108)
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2.9 Exponential distribution

The parameter estimation method in the case of Hydrologic statistic x following Exponential distribution
is shown below.

(1) Probability Density Function

f(x) =
1

a
exp

(
−x− c

a

)
(109)

c is a location parameter, a is a scale parameter.

(2) Cumulative Distribution Function

F (x) = 1− exp

(
−x− c

a

)
(110)

(3) Quantile xp for non-exceedance probability p

p = 1− exp

(
−x− c

a

)
→ x = c− a ln(1− p) (111)

xp = c− a ln(1− p) (112)

(4) Estimation of parameters (L-moments method)

b0 =
1

N

N∑
j=1

x(j) b1 =
1

N(N − 1)

N∑
j=1

(j − 1)x(j) (113)

where, x(j) is j-th value of sample x in ascending order. It means that x(1) is the minimum value of
sample data and x(N) is the maximum value of sample data.
The values of λi can be calculated using following relationship by deeming bi = βi.

λ1 = β0 λ2 = 2β1 − β0 (114)

Parameters can be estimated using following relationship between L-Moments and parameters.{
a = 2λ2

c = λ1 − a
(115)
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2.10 Generalized Pareto distribution (GPD)

The parameter estimation method in the case of Hydrologic statistic x following Generalized pareto
distribution is shown below. Exponential distribution is the same as Generalized Pareto distribution
with k = 0.

(1) Probability Density Function

f(x) =
1

a

(
1− k

x− c

a

)1/k−1

(k 6= 0) (116)

c is a location parameter, a is a scale parameter, k is a shape parameter.

(2) Cumulative Distribution Function

F (x) = 1−
(
1− k

x− c

a

)1/k

(k 6= 0) (117)

(3) Quantile xp for non-exceedance probability p

p = 1−
(
1− k

x− c

a

)1/k

→ x = c+
a

k

{
1− (1− p)k

}
(118)

xp = c+
a

k
·
{
1− (1− p)k

}
(119)

(4) Estimation of parameters (L-moments method)

b0 =
1

N

N∑
j=1

x(j) b1 =
1

N(N − 1)

N∑
j=1

(j−1)x(j) b2 =
1

N(N − 1)(N − 2)

N∑
j=1

(j−1)(j−2)x(j) (120)

where, x(j) is j-th value of sample x in ascending order. It means that x(1) is the minimum value of
sample data and x(N) is the maximum value of sample data.
The values of λi can be calculated using following relationship by deeming bi = βi.

λ1 = β0 λ2 = 2β1 − β0 λ3 = 6β2 − 6β1 + β0 (121)

Parameters can be estimated using following relationship between L-Moments and parameters.
k =

λ2 − 3λ3

λ2 + λ3

a = (1 + k)(2 + k)λ2

c = λ1 − (2 + k)λ2

(122)
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3. Confirmation of fitness
3.1 Correlation Coefficient

In order to confirm the fitness of the selected probability distribution model, Q-Q (quantile-quantile)
plot is used and the correlation coefficient is written in the graph. In this section, equations to calculate
the correlation coefficient is shown.

r =
N
∑

XiYi −
∑

Xi ·
∑

Yi√
[N
∑

X2
i − (

∑
Xi)2] · [N

∑
Yi

2 − (
∑

Yi)2]

where, r : correlation coefficient
N : number of a sample
Xi : observed data
Yi : calculated data using probability distribution model

3.2 SLSC

SLSC =

√
1

N
·
∑j=N

j=1 (sj − rj)

|r0.99 − r0.01|
(123)

si Normalized variable by parameters
ri Normalized variable by Plotting position formula

r0.99 Normalized value corresponding to the non-exceedance probability of 99%
r0.01 Normalized value corresponding to the non-exceedance probability of 1%

Distribution Si ri

LN3
ln(xi − a)− µy

σy
qnorm(pi)

(%-point of SND)

LP3
lnxi − c

a
qgamma(pi, shape = b, rate = 1)

(%-point of Gamma Distribution)

Gumbel exp

(
−
xi − c

a

)
− ln(pi)

GEV

(
1− k

xi − c

a

)1/k

− ln(pi)

SQRT-ET a · exp{ln(1 +
√
bxi)−

√
bxi} − ln(pi)

Weibull

(
xi − c

a

)k

− ln(1− pi)

Exponential
xi − c

a
− ln(1− pi)

GPD −
1

k
· ln

(
1− k ·

xi − c

a

)
− ln(1− pi)
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4. Statistical estimation by Jackknife method
The method to obtain the bias-corrected estimate and standard error by Jackknife method is shown in
this section. The procedure by Jackknife method is shown below.

1© Obtain the statistic estimate θ̂ using ovserved sample X = (x1, x2, · · · , xN ) with sample size of
N .

2© Obtain the statistic estimate θ̂(i) using sample Xi = (x1, x2, · · · , xi−1, xi+1, · · · , xN ) with sample
size of N − 1. In the dataset Xi, i-th data xi is removed.

3© By repeating above, dataset (θ̂(1), · · · , θ̂(N)) with the sample size of N can be obtain.

Next, obtain the average of dataset (θ̂(1), · · · , θ̂(N)).

θ̂(·) =
1

N

N∑
i=1

θ̂(i) (124)

4© Obtain the bias-corrected jackknife estimate using following equation.

θ̄ = N · θ̂ − (N − 1) · θ̂(·) (125)

where, θ̂ is the value obtained from step 1© using original sample X = (x1, x2, · · · , xN ) with

sample size of N , and θ̂(·) is the average value obtained from step 2© and 3© using re-sampled
dataset Xi = (x1, x2, · · · , xi−1, xi+1, · · · , xN ) with sample size of N − 1.

5© Finaly, the standard error (SE) of θ can be obtained using following equation.

(SE) =

√√√√N − 1

N

N∑
i=1

(
θ̂(i) − θ̂(·)

)2
(126)

5. Statistical estimation by Bootstrap method
The method to obtain the point estimate and confidence interval by Bootstrap method is shown in this
section. The procedure by Bootstrap method is shown below.

1© Set the original ovserved sample X = (x1, x2, · · · , xN ) with sample size of N .
2© Pick randomly N elements from original sample X allowing duplicates, and obtain the statistical

estimate θ∗(i) using re-sampled dataset Xi with sample size of N .
3© Repeat above step and obtain the dataset (θ∗(1), · · · , θ∗(B)) with sample size of B.

Next, calculate the average of dataset (θ∗(1), · · · , θ∗(B)). This becomes bootstrap point esti-
mate.

θ̂∗ =
1

B

B∑
i=1

θ∗(i) (127)

4© It deems that the distribution of a population is the same as the distribution of bootstrap repli-
cations (θ∗(1), · · · , θ∗(B)). If we set the dataset (θ∗1, · · · , θ∗B) after ranking from bottom to top,
bootstrap confidence interval at 1−α lebel of confidence is [θ∗α/2·B, θ∗(1−α/2)·B ]. If α = 0.05
and B = 1000, 95% bootstrap confidence interval becomes [θ∗25, θ∗975]. This method is called
bootstrap percentile method.
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6. Rejection Test
In usual, the very large or small value which seem to be singular in an ordinary sense are to be contained
in hydrologic observations. In hydrologic frequency analysis, the rejection test is carried out in order to
decide adoption or rejection of the singular variant. In this section, the procedure of rejection test for
the singular variant is introduced.

Subject Carry out the rejection test for maximim value xε which is contained in a sample with size of
N . (The maximum value xε is the targeted value of the rejection test.)

1© Calculate the limit singular level ε0 for the significant level β0 using following equation:

ε0 = 1− (1− β0)
1/N (normally, β0=5%) (128)

2© Select the type of probability distribution model and estimate parameters using the dataset with
sample size of N − 1 except the targeted value xε which is seemed singular value.

3© Estimate the exceedance probability p for targeted value xε using adopted provability distribution
model.

4© Estimate the % point of the standard mormal distribution uε, which has equal exceedance proba-
bility p for targeted value xε on adopted probability distribution model. It means to get the value
of uε satisfied following condition. Where, Φ is the cumulative distribution function of standard
normal distribution and F is the cumulative distribution function adopted for observed sample.

Exceedance probability p = 1− F (xε) = 1− Φ(uε) (129)

5© If the targeted value belongs to the population to which the sample with size of N − 1 except
targeted value belongs, F-value expressed below shall follow the F-distribution with the degrees
of freedom of (1,M − 1). Note that M(= N − 1) means sample size except the targeted value.

F =

(
M − 1

M + 1

)
· uε

2 (130)

So, calculate the probability on F-distribution 2ε which satisfies following condition:

F 1
M−1(2ε) =

(
M − 1

M + 1

)
· uε

2 (131)

6© Decide adoption or rejection by comparison between ε defined by targeted value and ε0 defined by
specified significant level β0. The detailed craiteria is shown below:

ε 5 ε0 The exceedance probability for the targeted value is smaller than or equal to

limit singular level.

Therefore, the targeted value shall be rejected. (don’t use it in the analysis)

ε > ε0 The exceedance provability for the targeted value is larger than limit singular level.

Therefore, the targeted value cannot be rejected. (use it in the analysis)

(132)

(Notice)

Applying method for the probability distributions except normal
Rejection test method using F-distribution is based of the theorem for only normal distribution.
Therefore, steps 2© 3© 4© are adopted in order to treat all probability distribution models. In shown
above, it is possible to treat all probability distribution models by using the % point of standard
normal distribution which has the same exceedance probability for targeted value on selected prob-
ability distribution model.
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